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EXCHANGEABLE -RANDOM MEASURES IN THE PLANE

By Olav Kallenberg

Auburn University
amd
University of North Carolina at Chapel Hill

Abstract

A random measure E on [0.!]2, [0,‘])<R’ or Ri is said to be separately
exchangeable, If its distribution Is invariant under arbitrary Lebesgue measure
preservlhg transformations in the two coordinates, and jointly exchangeable if

€ is defined on (O.I]2 or Ri, and its distribution is invariant under mappings

by a common measure preserving transformation in both directions. In each case,
we derive a general representstion of £ In terms of tndependent Polisson processes

and 1.1.d. random variables.

KEY WORDS: Separate and Joint exchangeability; ergodic distributions; Poisson

processes; uniform random variables.
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1. INTRODUCTICN AND MATN RESULTS

A random measure £ defined on the product of two diffuse Polish measure spaces
(X,A) and (Y,p) is said to be separately exchangeable, if its distribution is

invariant under arbitrary measure preserving transformations of X and' Y, i.e.

if §h-l d € for any measurable mapping h of the form h(x,y)=f(x)g(y), with Al

and pg lep. 1f (X,)\)=(Y,p),.and if the stated invariance is only required to hold

for functions of the form h{x,y)=f(x)£(y) with A€ *=A, we shall say instead

that £ is jointly exchangeable. Of these two notions, separate exchangeability

is clearly the strongest. An even stronger condition is that of carplete

exchangeability, where §h™ 8 ¢ is required for any measurable h with Axpht

=Xx}1. *\\; y ‘
\\) The main purpose of <the-present-paper is to derive de Finetti—;ype//____ X i

representations of arbitrary separately or jointly exchun:e/able*rﬁr'ﬁ;-\/neasures F

By this is meant representations of the distributions of £ as unique mixtures
(convex combinations) of so called 9}:&5 exchangeable distributions. The
existence of such integral representations is essentially a consequence of +he®
al theory, (cf. Maitra{'®), pynkin‘®, and section 12 in A1aous‘?), so
T St eint is to describe the extrame measures explicitly.

Through suitable Borel isarorphisms from the two spaces, one may easily
reduce the problem to the ial case vhen X and Y are real intervals, equipped
with corresponding rest::ict-.icora;;h b;:nd F tf Lebesgue measure (henceforth always
denoted g; %Ml—)ependmg on whether X and Y are finite or infinite, there are
essentially only five different cases to examine, namely those of separate
exchangeability on [0,1]2, R, x[0,1] or K%, and of joint exchangeability on
I:O,l_]2 or Ri. m* general representations in these five fundamental cases will
be given in our main Theorems 1-5, stated later in this section.

The corre one-dimensional case has been studied extensively in
Fallenberg!’'?, the one-dimensional representation theorems will in fact
play a basic role the present paper. Those results will be presented in

/(é wards, e'j«’i'; ”Lc'ffn‘bufm\‘f f'ML)m Vd,r;a.ut‘!. :
, / T_)
! (ko)




Section 3 below, in extended forms suitable for our present needs, and with
r.sew and simpler proofs. To establish the representations on Ri, we shall further
need some extensions of the representation theorems for exchangeable arrays,
where the original results are due to Aldous'}’2) and Hoover '®) (see also
l(allmberg‘n'lm)

Section 4.

. In this context, the required extensions are provided in
Cases of contimous parameter multivariate exchanceability were first
mentioned briefly in Kallenberg!®) and in Section 15 of Aldous‘? . our Theorem 4

essentially confirms a conjecture by Pldous ), p.139, about the ceneral form
of an extreme, separately exchangeable counting randam measure on Rf (though
Aldous' statement appears samewhat unclear, and his convergence criteria are
wrong) . Analogous problems for continuous two-parameter processes with
separately or jointly exchangeable increments have been studied extensively by
Kalla\berg(ll) and Hestir¥ |

To state our main representation theorems, recall that all notions of
exchangeability are henceforth with respect to Lebesgue measure A on [0,1] or R,,
and that an exchangeable distribution is extreme by definition, if it admits
only the trivial representation as a mixture of exchangeable laws. By saying
that a randam cbject € has an a.s. representation f(v‘)', we mean that there exists

some random element (r.e.) " possibly defined on same extension of the original
probability space (0,F,P), such that €=f () holds a.s. Thus no claim is made
about uniqueness or even measurability of n- Note that no extension as above is
needed, if the probability space is already rich enough to support an independent
random variable (r.v,) with a uniform distribution on [0,1] (U(0,1), cf. Lemma 1).
5

By a unit rate Poisson process nonR, we shall mean a Poisson random

measure in the sense of Kallenberg(g) with intensity measure A9. we shall further
say that 7 is formed by the sequence «, &,,..., if 1=25 , where ;a denotes a
unit mass at a (Dirac measure). Since the atom positions of¢. are only determined

]
up to a random permutation of indices, to say that a r.e. { is independent of




W e

,(“j) is clearly stronger than saying that § is independent of 7. To avoid
misunderstandings, we further stress the distinction between the phrases
'independent sequence‘’ and 'sequence of independent ...', where independence

in the former expression is between the sequence and all previously mentioned
r.e.'s, and in the latter between the elements in the sequence. Thus the samewhat
awkward phrase 'an indepaﬂé:t sequence of independent r.e.'s' is required to
express both.

Our five main representation theorems may now be stated, in order of
increasing depth and camplexity, starting with the relatively elementarv
representations on the unit square. We shall use the notation AD for the measure
along the diagonal D in [0,1]2 or ni with projections A on the diagonal axes.

Thus XD(B)=]{x: (x,x)€B} for Borel sets B in [0,1:\2 or Ri.

Theorem 1. A random measure & on [0.112 is separately exchangeable, iff it

has an a.s. representation
- , 2
€= zi)j:.‘ijsti't;'j +§{pj(ftjx2\) +,3j(2xé;,5)} +TX, (1.1)

for same R -valued r.v.'s “ij'Pi'pﬁ'Y' i,jeN, and same independent set of

independent U(0,1) r.v.'s ‘ri,‘t:;, i,jeN. Moreover, the former set of r.v.'s may

be chosen to be non-random, iff PS’I is extreme.

Theorem 2. A _random measure € 9_:1_[0,1]2 is jointly exchangeable, iff it

has an a.s. representation
= ' 2
3 z:i.%.‘ijiti’tj + Zj{/;j({tjxm +pj()x51j)} +¥2° +¥2,, (1.2)

for same R -valued r.v.'s “ij'Pj'Pé""’" i,jeN, and same independent sequence

of independent U(0,1) r.v.'s 1.'1, 51+« + Moreover, the former set of r.v.'s may

be chosen to be non-random, iff PE L is extreme.

Theorem 3. A random measure & on R+x[0,1] is separately exchangeable, iff

it has an a.s. representation




+ 23 g (e,9)8
5 PkoK L Tl (1.3)

+ T he, ) (T xA) + IA(AXE) + T2,
i i O’i jPJ ‘tj

LR ENCEAL S5
ij i

for same measurable functions fj,gk,h: Rf_—-v R+, j.keN, some R+-va1ued r.v.'s

ot,/lj,l', jéN, same independent set of independent U(0,l1) r.v.'s 1‘J g?ik, i,j,keN,

and sare independent sequence of random vectors (c'i,-oi) , i€tl, which form a unit

rate Poisson process on Ri. Moreover, the r.v.'s &, pj and ¥ may be chosen to

be non-randam, iff Pg-l is extreme.

Theorem 4. A random measure € on Ri is separately exchangeable, iff it has

an a.s. representation

= 2
£ = )i);. f“‘"’i"’fi"ij’;ti.tjt + {l(-t,’)k) BB +TX

+q' (u,#i,‘xlz_k)aoik'ﬂ} (1.4)
1

+2 % {g(x,%,X. )d
ik{ 17 ik, ,0py

+ T {he) (0 x2) + h (w8 AxE 1,
i i i

for some measurable functions f: R:-—» R+, q,9': Ri—’ R+ and h,h',Z: Ri—o R,, same

R+-valued r.v.'s o and ¥, some independent set of independent U(0,1) r.v.'s
I,’i., i,jeN, and same independent set of independent sequences of random vectors

((T;,¥,), ieN), ((‘tip‘i’i), ien , ((O'jk:xjk), keN) , ((oﬁk.xik). keN), jeN, and

“?k'?l;”'k) » keN), which form unit rate Poisson processes on Ri or Ri,

respectively. Moreover, o¢ and ¥ may be chosen to be non-random, iff Pg-l is

extreme.

Theorem 5. A random measure & on Rf_ is jointly exchangeable, iff it has an

a.s. representation

- 2
£= 212]', f("""i"’j';ij)‘ti,rj +pA +7A

*g% {s “'“i'xm)gri o

N +g'e, VX, )8

)
(1.5)
+ Zi{h(oc,#i) (Jtix 2) +h'(«3) (Axati)}

et e



+ Liem )& + L' (g )
for some measurable functions f: R:—9 R, 9,9": Ri—o R, and h,h',¢,L': Ri—* R,
sare R -valued r.v.'s «,8,¥, sore independent set of independent U(0,1) r.v.'s
tij=cji' l<i<j, and same independent set of independent sequences of randam

vectors ((T;,#), ieN), ((ojk,xjk), keN), jeN, and ((Q .M, ) . keN), which form
unit rate Poisson processes on Ri and Ri, respectively. Moreover, “ B and ¥ may
be chosen to be non-random, iff PE . is extreme.

In most previous work, the various notions of exchangeability for randam
measures have actually been defined in the formally weaker sense of invariance
under permutations of the increments. Thus for random measures £ on S=[0,l]2.
R, x[0,1] or R, the space S is divided into an arbitrary regular grid of
dyadic squares

(n)
lJ

and one requires the associated arrays of increments E;g)=€Ai(g) , i,3=1,2,...,

= [1-127, 2™ x [5-027, 327, i,3=L,2,..., (1.6)

to be semarately or jointly exchangeable, in the sense that
(€ (“’,'.) (£‘"’ or (g‘“’ j) = (g ‘"’), (1.7)

for each nelN, and for any finite permutations W and ' of the two index sets.
An intermediate version is to consider the array of restrictions of & to

(n)

the squares A . More precisely, we may define for each neN an array of random

measures f;j on [0,1]2 by

E."." (@sdt) = E((i-1+ds)2" x(§-14at)27), s,tef0,1], i,3=1,2,..., (1.8)
and require the condition in (1.7) to hold with the g("’ replaced by g‘“’ This
is clearly equivalent to restricting f and g in cur original definition to the
sub-classes of A-preserving transformations, which only permute a finite number
of disjoint dyadic intervals of equal length, while leavi:_mg the remaining set
invariant.

The possibilities seem bewildering, but fortunately the different ways of

defining exchangeability for random measures turn out to be equivalent. In the




one-dimensiona. case, this was noted already in Kallenberg'?), Lerma 9.0, and
for hicher dimensions a simple proof will be furnished in Section 8 below. The
equivalence in the two-diransional case will also follow from our proofs of the
main results, sincé these will be based on the third definition above, the one
involving transformations o'f permutation type.

In this way, a slightly greater generality will thus be attained for free.
However, our main reason for the chosen approach is to make certain general
results from the abstract theory apply. Here one considers randam elements £
in some lolish space S, eguipped with its Borel o-field f and a countable group
7 of measurable transformations of S, and one says that & (or its distribution
Pg-l) is T-Q_Me_, if Toggg for every Te 7. A set Ief is said to be

1

T-invariant, if T I=I for all Te 7", and the class of all7-invariant sets form

a sub-o~field of P, the so called 7-invariant o=field 7. One says that € or

PE" is Trergodic, if £ 17 is P-trivial, i.e. if P{§eI} equals 0 or 1 for
every le 7.

In this abstract setting, it is known (cf. Aldous‘?)) that the distribution
Q of an arbitrary 7-exchangeable r.e. € in S has a unique integral representation
in terms of extreme points, and that the latter are identical with the 7-ergodic
distributions. Furthermore, the conditional distributions

o[- [T]e€ = P[ﬁe.[ﬁ'l:y] (1.9)
are a,s. ergodic, so the de Finetti~-type representation of () is formally obtained
simply by taking expectations in (1.9).

It should now be clear why the third of the proposed definitions is the
rost appropriate one for our needs. The class of arbitrary measure preserving
transformations f (or of their tensor products £xg or £xf) is not a group,
simply because f is usually not invertible. !reover, the-class of such maprings
is uncountable, On the other hand, the elementary definition based on permutations
of increments over square lattices is not suitable either, since it is stated

in terms of transformations of certain functions of the random measure E, rather

e A




than for transformations of € itself. Only the last definition is useful, in
the sense of fitting into the abstract framework.

To see this, all we need to verify is that random measures on an arbitrary
Buclidean rectangle A may be regarded as randam elements in a suitable Polish
space. For this purpose, we take £ to be the set of all locally finite Borel
measures on A, and endow S with the o-field f generated by all coordinate
mappings p—s pB, peS, where B is an arbitrary Borel set in A. Then f is also
generated by the vague topologvy on S, and the latter is known to be Polish (cf.
Kallenberg'?, pp. 12 and 170).

For the reasons just mentioned, we shall henceforth (except in Proposition 1)
take the notions of exchangeability, ergodicity and invariance for random measures
to be defined with respect to the group of A-preserving transformations of [0,1]
or R which only permute a finite number of disjoint dyadic intervals of equal
length, in the sense described before. In particular, the terms 'ergodic' and
'extreme' may then be taken as synonymous.

As already mentioned, the proofs of our main results require some
representation formulas and other structural properties in the one-dimensional
case, as well as for two-dimensional exchangeable arrays. These are provided in
Sections 3 and 4, respectively. In Section 2, we collect a varietv of abstract
results, including a general ergodicity criterion, and a device for automatic
extension of most representation forrmlas from the ergodic to the general case.
Ifter this preparation, the main results will be proved in Sections 5-7. The
final Section 8 is devoted to the before-mentioned cormarison between the
different notions of exchangeability, to criteria for convergence of the series
in the main representation formulas, and to a discussion of same related questions
of uniqueness.

Several auxiliary results in this paper may be of m independent interest,
in vhich case their statements are often slightlv rore general than actuallv

needed for the main proofs. In fact, the author’'s main motivation for the present




wort. was to develop sane general techniques and a deeper understanding within
the area of multivariate exchangeability, rather than just provide some rigorous
proofs of certain representation formulas, whose statements may be intuitively

rather obvious anyway.
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2. SOME ABSTRACT LEMMAS

Our aim in this section is to establish some abstract results of varying

difficulty which will be needed to prove the main results of the paper. Some

of the results in this section may be of independent interest, sudxaslema 3

which yields an automatic extension of our representation formulas from the

extreme to the general case., and lemmas 4-5 where we state same useful conditions

for ergodicity and propose a related approach to the construction of directing r.e.'s.
Our first result is the simple 'coupling' Lemma 1.1 from Kallenberg'l?),

which we restate here for the reader's convenience.

Lenma 1. Let € and 7 be r.e.'s in same Polish spaces S and T, such that

| 3 d f(q) for same measurable mapping £f: T—»S. Then there exists sare measurable

_mapping g: Sx[O.l]—vT, such that whenever ¥ is a U(0,1) r.v. independent of ¢,

the r.e. 1)'=g(f,1’9 satisfies §=f(%') a.s. and v" gq.

A typical application of this result is to obtain a.s. representations of
random elements fram their distributional properties. For example, a random
measure with the same distribution as € in (1.1) has itself an a.s. representation
of this form, on a suitable extension of the original probability space.

The representations of the extreme distributions in Theorems 1 and 2 are
both parametric, in the sense that the general ergodic distribution is specified
by an array of real parameters. The situation in Theorems 3-5 appears to be very
different, since here even measurable functions appear as parameters. (This is
also true for the basic representations of Aldous(l'z’ and Hoover(s's) for
exchangeable arrays.) However, we shall show that the latter representations
may be restated in parametric form, which is useful for proving ergodicity
criteria and extensions to the non-ergodic case (cf. Kallenberg'll)).

Lewma 2. Given a o-finite measure space (S'P) and a Polish space T, there
E - ——————

exists a measurable mapping F': [0,1] x S— T, such that any measurable function

f: S—» T agrees a.e. p with F(c,-) for some cef0,1].
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Proof. By a Borel isamorphism, we may reduce to the case when T is a Borel
subset of [0,1]. Next we fix a complete orthonormal system &, ,@,,... in t(s,p)
with arbitrarily specified versions, and define a jointly measurable 'version
of the function

ha,s) =~ 3 ag (), a(arel, ses,

k=1 <% -
by taking the limit of partial sums along the index sequence
. 2_.-n

m = mf{reN; kz;rak‘z }, neN,
vhenever that sequence converges, and putting h(a,s)=0 on the exceptional p-
nullset. For any feLZ(S,P), there is then an ael.z with h(a,*)=f a.e. P' obtained
by taking a, =[¢ fdp for each k. In particular, h(a,-)€T a.e. when f is T-valued,
so by an obvious modification of h, we get a measurable function H:szs—»'r
with the same property as h. Next note that 4 is Borel isomorphic to a Borel
subset of [0,1]. Hence there exists a measurable mapping g of [0,1] onto £2,
and it remains to take Fic,*)=H(g(c),) for a1l ce[o,1}. h

The last lemma will now be used to prove a generalized version of Lemma 2.2
in mlll!!ﬂ:>er.'g(]‘]‘) , which is going to be our main tool for extending representation
formulas fram the ergodic to the general case.

Lewa 3. Fix four Polish spaces S, T, U, V, a measurable mapping F: TX U'—s V,
- —  ————

and game r.e.'s T in T and ¢,,0,,... in S. Let G denote the class of measurable

functions from € to U, and consider a r.e. £ in V and sare o~field J< ¥, such
plge |7] efpercr, (g.orj)))“l; 9¢G} a.s. (2.1)
Then there exist some measurable function G: [0,1] xS— U, same U(0,1) r.v. %,

and sare independent randam seguence (‘l:',ci,cvi,...) g (1:,0'1,0'2

§=F('!-".(G(¢.<JJ!))) a.s. - (2.2)

v-+.), Buch that

Proof. Define on S the probability measure }FZZ-de;l. By Lemma 2, there
exists same measurable function H: [0,1] x S— U, such that every geG agrees
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a.e. p with H(c,) for some ce[0,1]. Hence g(oy)=H(c,0)) a.s. for each j, o
(2.1) yields

PlEe-|7] e{P(F(c, (H(c,crj)))'l, cefo, Y.
By Lemma 2.2 in Kallenberg‘!!), there exist some J-measurable r.v. ¥ in [0,1],
and an independent random sequence (v',0},05,...) & (€,0,0,,...), such that

= F(z-,<n(r,o3)')> a.s.
Now ¥ & p(®,) , where o, is U(0,1) while p is the inverse distribution function
of §, and by Lemvma 1 we may then choose o U(0,1) and independent of ' and CHY
such that ¥=p(«) a.s. But then

€ = F(T', (Hip&) ,03))) a.s.,
and (2.2) follows if we take G(a,*)=H(p(a),*). n

The next result will be our main tool to characterize extremality. Though
stated formally for representations of parametric type, it extends immediately,
viaLemma 2, to the wider class of representations containing arbitrary
measurable functions.

Lemma 4. Fix four Polish spaces S,T,U,V, a measurable mapping f: TxU—S,
ar.e.¥ in U, and an independent U(0,1) r.v.¥. lets#fdenote the set of all

convex combinations of measures mt=P€;1 with §t=f (t/), teT. Then each m_ is

extreme in ¥, provided there exist some measurable mappings g: S—»V and h:
T—» V, such that

go€t=h(t) a.s,, teT, ] » (2.3)
h(s)=h(t) = m_=m,, 8, teT. (2.4)

This holds in particular, if there exists same measurable mapping F: S x[0,1]— s,

such that ;t and et',_=F(Et,l) are i.i.d. for every terT.

Proof. Fix teT, and assume that mt=Smsp(ds) for same. probability measure
ponT. Ten £ 9 _, where T is a r.e. in T vhich is independent of ¥ with
distribution p. If £ and g exist with the stated properties, it follows from
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(2.3) and Fubini's theorem that h(t)=h(t) a.s., so m =m,. a.s. by (2.4), which
means that m=m, for seT a.e. p- Hence m, is extreme.

Assuming instead that F exists with the stated properties, we dgfine

9(s)=P(F(s ¥)) ™", se5;  h(t)mm,, ter. (2.5)

Then (2.4) is trivially true, while (2.3) is obtained through the chain of
a.s. equalities .

ge §, = P[F(§g e | E]= p[;;,_e- [gt] =pgt - pgzl =m_=h(t),
where the first relation holds by (2.4), Fubini's theorem, and the fact that
4 and ¥ are independent. o

A related problem of general importance (cf. Kalle:berq(7'9’ll)) is to find
a 80 called directing r.e. Q associated with an exchangeable r.e. €, with the
properties that ? is a.s. §-measurable and invariant, and such that the

distributions of € and ¢ determine each other uniquely. Here such an object
will be obtained, under the hypotheses of Lemma 4. The result applies immediately
to most representations in this paper.

Lemma 5. Assume in Lemma 4 that M4 consists of all exchangeable distributions

with respect to some countable group 7° of measurable transformations of S, and
let g and h be such as stated. Then every T-exchangeable r.e. € in S admits an

a.s. representation €=£(7,7) for some r.e. n g in U and some independent r.e.

T in 7. Moreover, p=h(t) is a directing r.e. for £.

Proof. By Lemma 2.2 in Kallenberg'(n)', the first statement is even true
withT  a &7 -measurable r.e., where 7 derotes the 7-invariant o-field in S.
By (2.3) and Fubini's theorem, we get for any T

p = hir) = g(§) a.s., (2.6)
which shows that 0 is a.s. independent of the choice of T. Choosing T to be £ -7 -
measurable, we get a E‘l 7 ~meagurable version of f, which is clearly invariant.

From (2.6) it is further seen that the distribution of € determines that
of p. To prove the reverse statement, let £’ be another 7-exchangeable r.e.,
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say with a.s. representation g'=£(t',%)'), and assume that h(t) € h(z'). Then

there exists by Lamma 1 some r.e. T” d €' with h(z")=h(?) a.s., so Me=M.o d M

by (2.4), and it follows by Fubini's theorem that P§ ~ = Bm = Em_, = P¢' L. [
The remainder of this section is devoted to some rather technical results,

which will be of frequent use in subsequent sections.

* : )
Lama 6. Let S and S bebnmmablespacesLerxbdedmthgngsTa_rQT

of measurable transformations, and fix a measurable mapping f: S— S’ with

{01 T€T}= {T' o £; T'€T'}. (2.7)
Further assume that € is a 7-exchangeable [7-ergodic] r.e. in S. Then the r.e.
£¢§ in S' is 7'-exchangeable [7'-ergedic].
Proof. Assume that £ is T-exchangeable, fix T'eT ', and choose T€7 with
foT=T'ef. Then
T'efel = fareg & fog,

which shows that fe§ is 7 '-exchangeable.
Next we note that the invariant o-fields 7 and 7' in S and §' satisfy

f-17'c7. In fact, letting I'€ 7' and Te¢7 be arbitrary, and choosing T'e¢7 '
with T'e f=feT, we get T Lf ‘1'=f pt~lr'=fl1'. 1£ & is T-ergodic, we hence obtain

P{fete1’} = plbet 1’} =0or1, I'€7’,
which shows that fek is 7"-ergodic.

Lemma 7. Fix three measurable spaces S, S!' and S", endowed with classes

T, 7' andT" of measurable transformations, and a measurable mapping f: S'x S"— S.

Assume that, for every Te 7, there exist some T'¢ 7' and some family T;e?’“. xeS',

such that T;y is product measurable in (x,y)€S'X S", and noreover

Tef(x,y) = £(T'x, T}Y), xe5', yes". (2.8)
Let the r.e.'s Ein S' and 7 in S" be independent and exchangeable with respect
to 7' and 7", respectively. Then f(E,n) is a 7-exchangeable r.e. in S.
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Proof. Fix T 7, and choose T'e7' and Tj€7 ", xeS', with the stated
properties. Then Tef(§m)=£(T' ¢, Tg"y), 80 it is enough to show for any bounded
measurable function g: §'x S"—» R that Bg(T'» €, Tgen)=Eg(€,m). To see this, let
p and ¥ denote the distributions of € and . Using Fubini's theorem and the
independence and exchangeability of € and 7, we get

Bg(T'§, Tgon) = [p(axifg(r'x, Toy)v @y) = )‘p(dx)jg('r'x,y)v(dy)

= fv@an fax,yp@n = fvay foxyp@a = EgEn) .

Before stating the next two results, we need to introduce the notions of
separate or joint exchangeability and ergodicity for random elements in product
spaces. (The double meaning of these terms in the context of randam arrays or
measures should cause no confusion.) Thus assume that §=(€1,...,;n) is a r.e.
in slx...xsn, where each Sy is equipped with a class 7;( of measurable
transformations. Then € is said to be separately exchangeable or ergodic, if it

is exchangeable or ergodic with respect to the class of transformations 7ix x7;\
={Tlx cen x'l‘n; TleTl,... , T n€-7;‘}. The notions of joint exchangeability or ergodicity

are only defined when S;=...=S_and 7i=...=7;=7,' in which case the generating
class of transformations is ’7'(")-—-{T x...xT; TeT}.
The two results we need involving these notions may now be stated. Their

proofs are easy, so we shall only prove the second one.

‘Lemma 8. Mke{l,...,n}, let S, be a Polish space endowed with a

countable group 7'k of measurable transformations and the associated invariant
o-field 7;(, and let E==(§1,...,§n) be a r.e. in slx veoX Sn' Then € is separately
exchangeable, iff each component is conditionally exchangeable, given all the
others, and also iff the €k are conditionally independent and ergodic exchangeable,
given e'l'l'le Y] §;17n. In that case, 61 is conditionally independent of

(&yr--- &), given §717;, 50 the §, are mitually indecendént vhen at least n-1

of them are ergodic. They are further all ergodic, iff € is so.




15

Lemma 9. Fix a Polish space S, endowed with a ocountable group 7 of measurable

transformations. Let € and Mbe two r.e.'s in §, such that § is 7-exchangeable,

while " is a.s. conditionally T-exchangeable, given §, and assume that the pair
(€7n) is jointly 7-ergodic. Then § and ") are independent ergodic 7-exchangeable.

Proof. The exchangeability of 5 follows through averaging from the
corresponding conditional property. Next note that, if I< S is measurable
invariant, then IS and S xI are both T2/ -invariant, so the joint ergodicity
of (&) implies P{feI}=P{(¢,M)€IXS}=0 or 1, and similarly for P{ner}, which
shows that € and?, are ergodic. In particular, the distribution of # is extreme
exchangeable, so the decomposition P¥ 1= E P[je-lg) must be trivial, which means
that Pfne-|&] =Pv\-1 a.s. Hence § and W are independent. a

The last result in this section will only be needed in Section 6, in order
to characterize extremality for exchangeable random measures on [0,1] XR_, by
means of the last condition in Lemma 4. Recall that a kernel on a measurable
space (S,f) is a mapping K: Sx¥— R , such that K(s,+) is a measure for each
seS, while K(-,B) is f-measurable for each Be?.

Lama 10. Fix three Polish spaces S, U, V, and an index set T, same measurable

mappings f,: UXV—> S, t€T, two independent r.e.’'s, « in U and 9 in V, and an
independent U(0,1) r.v. V. Put

§, = £ ), teT, (2.9)
and assume that

plee-lu]= K(§.;*) a.s., teT, (2.10)

for some kernel K on S. Then there exist same measurable mapping g: Sx[O.l]—vS.

and for each teT some r.e. N g', independent of (Et"l) » such that

Er = g(E. W = £ () a.s,, teT. (2.11)

Proof. Let us first reduce the discussion, through a Borel isamorphism, to
the case when S=R. Then (2.10) may be stated in the form

e m————— Ly
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H (o,x) = p[;é_xjujs K(§,, (-=x]) = G(§_,X), X€R, a.s., teT, (2.12)
mereGandﬂ)tharedistributionfmxctionsinthelastargment. Since G and
the Ht are clearly product measurable, so are the corresponding right-continuous
inverses g and ht' and (2.12) shows that the r.e.'s 5":=g(€ ,%) satisfy

€L =h (T a.s., tel. (2.13)
Since o and ¥ are irdepenie.nt, (2.13) yields by the definition of ht

€L 9 (g0, ter. (2.18)
By (2.9), this is also true with § repleced by £, ('), vhere v 39 and
independent of (N,U,v)), and with this change, (2.13) shows thatr‘ becomes
independent of both sides of (2.14), so we get

6Ly € (F o)y, e
Applying Lerma 1 for each t, we conclude that there exist same random triples

CRE AL NINTE TSP ¥ (2.15)
satisfying

& = (£ &Y, L F) as., ter
In particular, §t=uand -?"t=1| a.s., 0 (2.11) holds with n = "‘jt‘: Moreover, (2.15)
shows that " is independent of (w,7), and hence also of (€. . Q
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3. SQME ONE-DIMEMNSICNAL RFESULTS

The proofs of our main theorems depend on some results about random measures on
a product space, which are exchangeable in one coordinate only. In particular,
the first three lemmas of this section provide the basic characterizations of
such random measures. These results generalize the characterizations of randam

measures on [0,1] or R_, given in Kallenberg!’’?

, and could in fact have been
derived from the latter. However, we prefer to prove them afresh, using
a new and nore elementary method. Also of same independent interest are the
next two results, Lemmas 14-15, which relate the exchangeability of a
marked point process to properties of the associated sequences of random times
and marks. The remaining results of this section are more technical, and tailored
to fit our special needs in the subsequent sections.

For the basic characterizations, we shall need to consider random measures
% on product spaces S of the form [0,1]X K or R, xK, where K is Polish. We shall
then assume that K admits a complete metrization, such that €B is a finite r.v.
for every (metrically) bounded Borel set BCS. Such a random measure € is said
to be exchangeable, if L € & for all transformations £ in the first coordinate
which preserve Lebesque measure A, or equivalently, for the subclass of
transformations which permute finitely many disjoint dyadic intervals of equal
length. As explained in Section 1, we shall carry out all proofs under the second
and formally weaker definition. The equivalence of the two definitions will then
follow from the form of the representations. In particular, the notions of
invariance and ergodicity are tacitly assumed to be defined with respect to the
smaller class of transformations.

By a K-marked point process on [0,1] or R, we shall mean an integer valued

random measure § on [0,1] xK or R XK, respectively, such that €({t}xK)=0 or 1
for all t. By analogy, we may further say that & is a K-marked diffuse random

measure on [0,1] or R, if it is a random measure on the corresponding product
space satisfying E({t}xK)=0. In either case, § is said to have independent
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increments, if EBl,...,QBm are independent for any collection of Borel sets

By....,B with disjoint projections on {0,1] or R,.

Lerma 11. Fix a Polish space K, and let € be a K-arked diffuse random

measure on [0,1]) or R,. Then § is exchangeable, iff §=Ax'r, a.s. for same randam

measure 7) on K. In that case, ¢ is extreme iffv, is a.s. non-random, i.e. iff €
has independent increments.

Proof. let £ be exchangeable. In order to prove that € has the stated form,
we may clearly assume that § is defined on [0,1]x K. Then the projection 1=
E([0,1]x+) onto K is invariant, so the exchangeability of € is preserved under
corﬁitiom‘.ngmv’, and we may assuve by Lemma 3thatr' is non-random. By a
monotone class argument, it is then emough to show, for any bounded Borel set
BcK, that §(-xB)=()B)A a.s., which reduces the discussion to the case of diffuse
random measures £ on [0,1] with fixed total mass m. In that case, the
exchangeability of € implies E¢smA . Moreover, the product moment E(€B) (§C) for
disjoint dyadic intervals B,Cc[0,1] is seen to depend on AB and AC only, so for
dyadic rectangles A outside the diagonal D we get

€A =cal, (3.1)
for some constant c)0. The last relation extends by a monotone class argument
to arbitrary Borel sets AC[0,1]2\D, and since €°D=0 when £ is diffuse, (3.1)
must in fact be true for arbitrary Ac[0,1]%. In particular, we get c=m’ by taking

2 that E(£B) 2=m2(45)2, so Var (¢B) =0,

7=[0,1]2. But then we get for A of the form B
and therefore EP=-mAB a.s. Hencde §=m1' a.s., as asserted. Conversely, any random
measure of the form )x'r, is invariant and hence trivially exchangeable. The last
assertion follows easily from Lemma 4, plus the fact that a random variable is

independent of itself iff it is a.s. non-random. a

Lemma 12 . Fix a Polish space K, and let & be a K-marked point process on
[0,1). Then £ is exchangeable, iff

g = jgpsfj"j a.s., (3.2)
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for some N-valued r.v. v, some K-valued r.e.’s p;» 3<¥, and some independent

sequence of independent U(0,1) r.v.'s 1"2"" Moreover, the distributions of
ﬁu_ﬂ_FSIS determine each other uniquely, and € is extreme iff 3 is a.s.

Fj

non-random, invhidacuevaxﬂthepjmybednsentobeconstants.

Proof. Let € be exchangeable. Since the projection fi= ([0,1]x-) is invariant,

the exchangeability of € is preserved under conditioning on/i, 80 we may assume
that (3 is ron-randam. Let by ,b,,... be the atam positions of 3, and write m =p{b,}
and € =§(-x{b,}). Fixing the indices j,,...,j , it is clear that the product
moment E(Elel) ...(ejnnn) for disjoint dyadic intervals Bl,...,Bnc[O,lj will
only deperd on )Bl,...ABn. Hence we cet by linearity, for any dyadic rectangle
Ac[0,1]" outside the union D_ of all diagonal sets,

E(Ejlx ...xfj )A =c A"a, (3.3)
n

where cy0 is a constant depending on jl'“"jn' By a monotone class argument,

(3.3) extends to arbitrary Borel sets Acoﬁ. Now (3.3) is equivalent to

n n n,+.,..#n
Eglx..xtda=cal 9, (3.4)

with a constant ¢'>0 depending on Nyrece Ny and (3,4) extends to arbitrary

Borel sets Acnﬁ x...xnﬁ . S8ince ‘1'--"% have no atam sites in camwmon. Taking

C C 1 d
A=D x...xn ,wegetinparticmlar
n N4 4
c' = 7I Ty, = 71'1(n\k(mk-1)"-(mk-nk+1)). (3.5)
k=

Next we note that (3.4) remains valid with c’ as in (3.5), if we replace

(9)

the E by independent sample processes ™ (cf. Kallenberg'®') with the same

total masses L Thus
n n n
n(srlllx ceoxg Ha=Emixoon I, Aol x...xnf
1 a
n Il.m
which extends to arbitrary Borel sets aAc [0,1] 1 d, gince the ﬁk and n,

are simple point processes (cf. Krickeberg (14)) .

Hence the sequences (tk) and
(’;k) havethesauepmductnunentmeasuresofallorders,andsimeeachtkardr'k

is bounded by a constant, the joint distributions must be the same. Thus £ has
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the same distribution as the sim in (3.2), and the a.s. representation then
follows by Lamma 1.

Conversely, any point process of the form (3.2) is clearly exchangeable.
The remaining statements follow easily from Lemmas 4 and 5. ’ n

To state the next result, recall that iftandqarerarﬂanmeasureson

mPolishspaeeS,ﬂmﬁissaidtobeacoxgooessdixectedbyv, if
conditionally on v, € is a.s. a Poisson process on S with intensity measure ]
(ct. Kallenberg”). In this case, the distributions of & ad 7 are known to
determine each other uniquely. Note also that, if &'  E, then Lama 1 yields
theexistenceofsalef“ gq, such that €' is a Cox process directedbyv,'.

Lemma 13. Pixamlishsgaoe!(,arﬂletﬁbea!(—narkedpointprocesson&.

Then § is exchangeable, iffﬂneremdstssmerarﬂanneasurevo_nk, such that

€ is a Cox process directed by )\x'].Intlntcase,thedistrthtionsofg;arEq

determine each other uniquely, and € is extreme iff " is a.s. non-; , which
happens iff & has independent increments.

Proof, Let £ be exchangeable. Then Lemma 12 applies to the restrictions Et
of § to the sets [0,t] xK, so writing p=8[0,gx-), it is clear that 3, is a
p~thinning Ofpt/p for arbitrary t>0 and pe(0,1). Héne each[& is a Oox process
(cf. Corollary 8.5 in Kallenberg'?)), and Lamma 12 then shows that the same
thing is true for each Et' with a directing random measure of the form Xxv,t.
But then n, Q‘qt for any s,t>0, s0 § itself must be a Cox process directed by
some random measure qu with .,'g - Since a version of 7 is measurably
determined by & through the law of large nurbers, the remaining assertions follow
easily by Lemma 4 and Kolmogorov's 0-1 law. n

The next lemma uses the notion of separate exchangeability for random
elaments in product spaces, introduced in Section 2.
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Lemma 14. Fix a Polish space K, and consider a K-marked point process € on
[0,1] or R, of the Zuiu
5 1.6)
€= ’ ( 3
=1 5% '

where neN is fixed, while [Ty Write 1|=§(~xx) and cz=(u1,q2,...). Then

€ is exchangeable iff the pair (1,,-:) is separately exchangeable, and in that case,
€ is ergodic iffv' and e( are independent and ergodic.

Proof. Let us first take § to be defined on R, s0 that n=w. Assume that
n and « are independent and ergodic exchangeable. 'menvl is homogeneous Poisson
by Lemma 13, while « is i.i.d., 80 writing c=En,1] and }Fpul’l, it is seen that
€ is Poisson with intensity measure c;\xP, and hence ergodic exchangeable by
Lemma 13. Conversely, if € is ergodic exchangeable, it must be Poisson with an
intensity measure of the form cAx pr with ¢ »0 and pa probability measure on K.
Since % and of are measurable functions of €, their joint distribution is
determined by that of €, and hence must be the same as before. Thus 7) ard &« are
independent ergodic exchangeable in this case.

If € is instead defined on [0,1], then n<po by Lemma 12, so assuming 7 and
ol to be independent exchangeable, it may be seen directly fram (3.6) that even
€ is exchangeable. In this case7 is automatically ergodic, and if even & is
assumed to be ergodic, then §([0,1]x -)=3Jdy is a.s. non-randam, so € will be
ergodic by Lemma 12. Conversely, the distrilgution of an ergodic exchangeable
process § is determined by the non-random measure =([0,1]Jx-) on K, and since
every (3 can be writt-:en asza'pj for same ergodic exchangeable sequence 9’1"“'/’n)
in K, the previous uniqueness argument shows that r, and ¢ are again independent
ergodic exchangeable.

In both cases, it follows by Lemma 8 that § is ergodic exchangeable, iff
(q,«) is separately ergodic exchangeable. Hence we obtain-the first assertion
by conditioning on the invariant o-fields for & and (7,«) , respectively. 1
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We shall need the following simple corollary:
Lewa 15. let T,,...,T, be independent U(0,1) r.v.'s, write n=2& , and
_— ¥ i
define x=(ul,...,u ) as the a.s. unique perrutation of (1,...,n), such that
1: <...$1: 'Ihenv and 3 are independent ergodic exchangeable.
"
Proof. Write 0.=T_ , and note that the marked point process
——e 3 xj .
€= ): 5= zs
i=1 %’ j=1 j
is ergodic exchangeable on [0,1]. Then apply Lemma 14. ]

The remainder of this section is devoted to a study of random measures &
on R, x[0,1] which are exchangesble along R,, i.e. such that €h™> & for every
function h of the form h(x,y)=f(x), where f is a measure preserving transformation
of R+. The general representation of such random measures € can be easily deduced
from Lemmas 11 and 13. However, we shall only concentrate on certain specific
features, which will be important for the proofs of Theorems 3-5.

As before, we shall in fact assume in the proofs that the measure preserving
transformations f above are of the special type which permute finitely many
disjoint dyadic intervals of equal length. Note in particular that ergodicity
is always defined with respect to this restricted class of transformations. Let
us further agree to denote by M,[O,l] the Polish space of finite measures on

[0,1], and to write 4) for the function l-e > on R,.

Lemma 16. A randam measure & on R x [0,1] is ergodic exchangeable along R,

iff & has stationary independent increments along R. In that case, define

= Epe§([0,1]x{t}, te[0,1]. (3.7

Then the sets T ={te[0,1];: c>¢} are finite for all €>0, so T, is countable.

Moreover, E is a.s. such that

E{(s', 0} E{(s",t)} =0, Ocs'es", te[0,1]\T,. (3.8)

Proof. Assume § to be ergodic exchangeable, define M={s>0; E({s}x {o,1]) >0t

and let § denote the restriction of § to M x (0,1]. Then ¢ is again ergodic
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exchangeable by Lemma 6, and since §(-x[0,1]) is diffuse, Lemma 11 shows that
f=kxp a.s., for some fixed measure p on [O,Q. let us further define a point

process n on R,_with marks in M0, 1)\ {0}, by putting

=28 .
N7 & s sk

'Ihenevenqisergodicexclm\geablebylam\ae, soLamal3shwsthatv) is
stationary Poisson. Fram the structure of § and ", it is clear that § has stationary
independent increments along R . Conversely, any such random measure € is trivially
exchangeable, and the ergodicity of § follows easily fram the Hewitt-Savage
0-1 law.

Next we write Et-E(to,ljxft}) and qt=+-l (c,), for te,1]. 1f c.>€ >0,
we get by Chebyshev’s inequality and (3.7),

P{2E>e}> M{2€>q] 51 - explq/2)Bexp(-§,) = $(q/2) > P(€/2),

so if T¢ contains an infinite sequence tl,t 1+..o we get by Fatou's lemma

2

0= P{E[O,ljzsn}?_ P{th >¢ i.o.} » limsup P{2§: >€}24’(€/2) > 0,

n n<%co n

which is impossible and shows that T¢ is finite.

To prove the last assertion, define

A, = {te[0,2]N\T,: £([0,s]x{th >0}, s>0.

We then have to prove, for any fixed rational s»0, that £((s,®)X A))=0 a.s.
Since € has independent increments, this follows formally by the camputation

E§((sm)xA) =EZ F §((smx{t}) = 0.
ten

S
To justify the use of Fubini's theorem in the first step, recall that there

exist some randam variables vV in N and Ty Tyse-. in [0,1], all measurable with

respect to €([0,8]x-), such that A={T; k<V} (cf. Lerma 2.3 in Kallenberg(g)

).
It remains to notice that F{s} is jointly measurable in (P.S)EM[O,JJ x [0,1],

as may be seen by a simple aporoximation argument. o

Lemma 17, Let € be a random measure on R _x[0,1] which is exchangeable
—_— —— +

[}

along R, define
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1 &
P = limsup = T poE(k-1,kIx{th, tefo,1], (3.9)
N0 k=1
and put M={te[0,1]; Pe> 0}. Then MC{‘!:'j} a.s., for same §-measurable r.v.'s
T,/ T,0... in [0,]], satisfying ?tlz?.tza_...—» 0 a.s., and such that ;=7,#0
implies i=j. Moreover, g is a.s. such that
§{ts' )} E{(s",t)} =0, Ocs'es”, tef0, 1]\ M. (3.10)
Proof. If € is ergodic, the law of large mumbers yields Py=Cy a-s. for
each te[0,1], where c, is given by (3.7), and the last statement of Lemma 16
shows that the exceptional P-nullset may be taken to be independent of t. In
particular, the set {te[0,1]; Pt>£} is a.s. finite for every €>0.
In the general case, we note that M is contained in the set
) 0
M' = {te[0,1]; ER x{thro} = U {te[0,1]; £([o,n] x {t}>0}.
n=1
By Lertma 2.3 in Kallawberg(g) , there exist some distinct E~measurable r.v.'s
019+ in [0,1], such that M'C{o‘j}, and we note that even the quantities
[33.1:0. become §-measurable. It is now ocbvious how to define the "L'J recursively,
by suitable ordering of the c:'j according to the sizes of /!j.
The last assertion is clearly equivalent to
1{pj=o}§([o,s]x{dj})§( (s,-o)x{o'j}) =0, se€Q, JjeN.
But this holds in the ergodic case by Lemma 16, and in general it then follows
by conditioning on the invariant o~field. 1}

We finally record a simple result, stated in terms of the shift operators

e, along R, defined in an obvious way on the class of measures on R, x[0,1] .

Lemma 18. let the randam measure g on R+x[0.1] have conditionally stationary

independent increments along R , given same o—fieldg, and fix arbitrary
measurable mappings £: R x [0, R, and h: R~ R,. Then

n
efnkn|g] = !);i::.% T h(@e0n as. (3.11)

Proof. If 9={n,¢} , then (3.11) holds by the ergodic theorem and Xolmogorov's
0~1 law. In general, it then follows by conditioning on 9 1
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4. NFSTED EXCHANGFAPLLE ARRAYS
Our aim in this section in to prove a representation theorem for certain
sequences Of separately or jointly exchangeable arrays, which will be needed
for the proofs of Theorems 4 and S in Section 7. '
(11)

To prepare for this, recall from Aldcus(l'z) and !bover(s’s) (cf. Kallenberg )

that an array %= (x . 1,JQN) of randam vectors in Rd is separately ergodic

exchangeable (mder finite permutations of indices), iff it admits a representation
xij = f(“i'f’j"ij) a.s., 1i,jeN, 4.1)

in terms of some measurable function f: [0,1] 3—v Rd and same set of indeperdent

u(o,1) r.v.'s o, PJ,T » i,jEN. Similarly, X is jointly ergodic exchangeable,
iff (4.1) holds withe;=f3,, ¥ 1= in and V,,=0, for some function f as above and
same independent U(0,1) r.v.’s o and rij’ 1<icj. In both cases, we shall call

the f in (4.1) a representing function for X.

Let us next consider a sequence of arrays x(n) with R3-valued entries of

the special form

xm _ (n) (n) ,(n)
13 (Y r Ui VJ
and let Alchzc... and Blcnzc... be Borel sets in R. We shall say that the

(n)

), i,jeN, (4.2)

X are nested with respect to the sequences (An) and (Bn), ifx('“) can be
obtained from x(") for any men by selection of all rows and colums with

vV en, and v{Ves . Formly,

2} = x{ i,je, (4.3)

"'j

. (n}), . .
. = inflkeN; 1, (U )=i ! = inflkeN;
% { jZl Ay by { =)
It iseasily verified that, if x(") is separately ergodic exchangeable, then

vhere
(n), _
113 (v )= 1}, ieN. (4.4)

80 is x(m) for each m<n. In this case, the probability that a fixed row or

(n)

colum of X" will be included in X™ is given by a /a_or b /b, respectively,

where the sequences 1=a1<_a25... and 1=b1<_b2_<_... are defined by

-puMen), blae viVe}, nex. (4.5)

-1
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Similar statements hold for jointly ergodic exchangeable arrays, with Rz-valued

entries of the form

n _ (0 @) ;
Xij (Yij r Ui )' ipjm' (4-6)

which are assumed to be nested with respect to a single seguence of Borel sets

. . . (n)_,.(n) = .
}'.-,lchzc... in R. Thus we take in this case Vi sui ard Bn=An. so that "i—-ki

and b =a .
In both cases it is clear that, if fn is a representing function for x(")
and if m«n, then the function

£,%y,2) = £ (am/a )x, b /o)y, 2), x,y,z¢[0,1], 4.7
is a representing function for x(“" . This suggests that there should exist a
function f: Rf_x[o,l]—b R3 [or R2], such that the arrays x‘") have representing
functions

£ (x,y,2) = flax by, z), xy,2¢[0,1], nen. (4.8)

Lerma 19. Consider a of separately ercodic excha le arrays x(n)

as in (4.2), which are nested with respect to some seguences () and (B ) of

Borel sets in R, amd define the sequences (an) and (bn) by (4.5). Then there

exists a measurable function f: Rix[o,lj—v R3, such that the arrays x(n) have

representing functions fn given by (4.8). The corresponding statement holds for

nested sequences of jointly ergodic exchangeable arravs of the form (4.6).

Unfortunately, no simple proof of this result seems to exist. One might
try to construct a sequence of representing functions fn by successive extensions,

such that (4.7) becumes fulfilled in each step. It turns out, however, that no

(n)

extension fn+1 of a given representing function fn for X with the desired

properties need to exist. Relying on Hoover's equivalence criterion(S) for the

(12)

case of a fixed array (cf. Kallenberg and Provosition 3 below), one might

then try a modified extension procedure, where two randamization variables are

2n+1. Since this becames

added in each step, so that f becames a function on [0,1]
rather complicated, we prefer a direct approach, mimicking the standard proofs

of (4.1), as presented in Aldous‘1’2) and Kallenbergll),
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Proof. We shall only consider the separately exchangeable case, the joint case
being similar. By the Daniell-Kolmogorov theorem, we may extend each X'™ to an
exchangeable array indexed by Z2, and by another application of the same theorem,
we may do this simaltaneously for all n, in such a way that the extended secuence
x=(x'") becomes nested in the obwious sense. Let X~ denote the restriction of
X to the index set 2’={(i,31; 1,3<0}. Let us further write X{™={x{?; jco},
i,neN, and for nam, let X™™ denote the subsequence of elements x‘“" with

vfm)c-An. If instead m«<n, we put x(m.n) (::’, where ‘K is given by (43.4). Finallv
put o™ =x™"; ne) and o™ ’—(a‘“", ieN) . The arrays 3™ ana o™

defined in the same way, but with the roles of indices i and j interchanged.
Fixing men and letting the %, and n5 be given by (4.4), it is clear from the

definitions that
aim) (n) (!'l) i,jen (4.9)

«& ‘j, 1 . .

The argument in Aldous(l 2) apolies to the array (x““), d(n) ;m)' X ;
i, jeN) for fixed meN, and shows that the sequences u(m) and ﬂ(m) are conditionally
independent and i.i d., given X~, that the xi";') are conditionally independent,
given (X ot I; ), and that

Px{Te|x7, «™, g = g x" o™ i) s, djen, (4.10)
forsm\ekernell(mi:ﬂependentofiandj. Wecanact\nllyctmsexmtobe
independent even of m. To see this, it is enough to show, for fixed n>m and

i,jeN, that .
(m) (m) L(m)y _ - (M alm)
P[x e |x di 'Pj ] = Kn(x [ ui [2 j ,') a-s«, (4.11)
which by (4. 4) and (4.9) is equivalent to
D[x(") ,e ’x °‘(n) P(n)] =K_ ", u(n) P(n) a.s. (4.12)

X

Now (4.12)is in fact true with LA and ns replaced hy any finite stopping times

nand ' with respect to the sequences &(n)

and P(n) , respectively, as may be
seen if we replace (4.12)by its integrated version, split each side into a double

sum, corresponding to the partition of £ into sets {(x,x')=(k,k')} » ard eiply
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relation (4.10) termwise.
By a standard procedure, we may next construct a measurable function
F: R®x3®xP"x[0,1]]-» R, where R symbolizes the state spaces of the arrays
X, “(m) and(!(m) such that for any U(0,1) r.v. ¥, '
PAF (x,y,2.¥)€-} = K(x,y,2|) = K (x,v,2|*). (4.13)

By Lemra 1, relations (4,10) and (4.13), and the conditional independence of the xi";",
there exist for each meN scme independent U(0,1) r.v.'s tfjf" , independent even
of X~, ™ am p‘“" , such that
xf;" =Fx, o™, p‘“" ‘(g") a.s., i,jmeN. (4.14)

Since the arrays x‘“’ are ergodic by hypothesis, their restrictions to N°
are independent of X , so conditioning on X~ leaves their joint distribution
invariant. Note also that the z{";’ remain conditionally indeperdent U(0,1) for
fixed m, independentlv of oL(”) and F(m) ' Lemma 1, we may then redefine the
quantities on the right of (4.14) ,such that the joint distribution of all r.e.'s
in(4,14)will agree with same fixed conditional distribution with the stated
properties. Thus we may henceforth take X~ to be a constant array, and assume
for each meN that the seguences o (m) and P(m) are i.i.d. and mutually independmt,
vhile the Ui“;" are independent U(0,1) and independent also ofer™ and,!

Note that (4.14) now reduces to
(rn) - f("‘(m) (m) ’(m)

1) ) a.s., 1i,j,meN, (4.15)
for save measurable fmcuon f: R xR x[O,l]—\R3.
Fram the definitions of “(m) am‘.'P:(im), it is clear that
(m) _ (m) vim (m) -
Ui = 1'10 «, J To j i,j,meN, (4.16)
for suitable projections 1‘1 ,1"2: K= R. Defining
~1 -
[ . 1 = i
ap=7'a, By L7 BT (4.17)

we may then rewrite (4 4) in the form
= inffken; { Lo @™)=i}, g = ine{ken; 2 M)\, ieN. (.19
{ LAY Jon { nglsn(” .
Letting Fim and vm denote the distributions of 'ém) and pj(" , respectively, and
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using the strong Markov property for i.i.d. sequences, we may conclude from (4.9)
and (4.18) that

P = Pol 1) V= V[l IBr), men. (4.19)
Bencethereexistsmed—finihemeam:espandvmk", such that
Po = PEINT ¥, = v[-|B], nen. (4.20)

By (4.5), (4.16) and {4,17), we may normalize P and v in such a way that

r(l\;) =a, V(Bl") = bn. nEN, (4.21)

Inbedding R™ into R and using (4.20) and (4.21), we may easily construct a

pair of measurable mappings g, h: R—R, satisfying

){se[O,an]; g(s)e-} = ap . l{se[o,bn]; h(s)e-} =b ¥, net. (4.22)
Hence we get, for any U(0,1) r.v. W,

d_(n .

gla ¥) = e, ), h(b_+) d Jf“’, i,j.nen, (4.23)
Using (4.15), (4.23) and Lemma 1, we may conclude that x(n) has representing
function

£.(x,y,2) = £(gla x), hiby), 2), x,y,2¢[0,1]. (4.24)
Thus the assertion of the lemma holds with f replaced by f(g(-),h(=),*). a
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5. EXCHANGEABILITY IN A SQUAFE

The aim of this section is to prove the first two main theorems of the paper,
and further to derive same auxiliary results about exchangeable randam measures
in the unit square, which will be needed in subsequent sections. mmut
this section, the notions of exchangeability, invariance and ergodicity for
randmneas&maredeﬁ.ned.withrespect to the groups of measure preserving
transformations which permute a finite nunber of disjoint dyadic intervals of
equal length. For convenience, we shall often write A,,\ for the restriction of
a measure 1 to scme measurable set A, i.e. A’FP(A"‘).

Proof of Theorem 1. Consider a separately exchangeable random measure §

on [0,1]%. In order to prove that £ has a representation as in (1.1), it is
encugh by Lemma 3 to assume that € is ergodic, and to establish the representation
formula (1.1) with non-random coefficients. In that case, we define

M = {se[0.1: &({s}x[0,1])>0}, M, = {telo,1); &fo,Yx{th >0}, (5.1
and conclude from Lemma 6 that (M7 x[0,1])¢ is exchangesble in the first
coordinate and ([0,1] XMJ)€ in the second. Hence Lemma 11 yields

(M;‘: xforlj)e = Ax 7‘2: ([0,1] XM;)E = ’hx A, a.s., (5.2)
where .

n, = §0fx-), 7 = gCx. (5.3)
In particular,

("-EXM;)S = (7'1»!‘1:)22 = ("ZM;)AZ a.s., (5.4)

vhere the coefficients on the right must be a.s. constant, say equal to c>0,
since € is ergodic. The measure c)z is invariant, so e-ci\z is again eroodic
exchangeable, and we may henceforth assume that ,e(M‘l:x M) =0.
In that case, it is seen from (5.2) that € has a representation
€= )i%“ijé"i"’;'j +zj{,sj(xdjx)) *f‘i""“os’} il (5.5)
for some §-measurable r.v.'s o 'Pi'l’ﬁio and 01,636[0,1_] , i,jeN, where the latter
are a.s. distinct. If we take the sequences

r;=p, + )J:.‘ij, r& =/35 + zi‘uij, i,jeN, (5.6)
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to be non-decreasing, they become a.s. invariant functions of £, and hence a.s.
;lon-rarxhn, since § is ergodic. Then so are the index sets
J = {jeN; rj>0}, J' = {jeN; r5>0}. (5.7)
For definiteness, we may further assume that o’i<0’j when i<j with ri=rj>0,
and similarly for the 05.
Independently of E, we introduce same independent U(0,1) r.v.'s 9 and &,
ieJ and j&J', and form the point processes
1= Ziscri,r s 52" %505,1:5.,43 (3.8)
on [0,1] x(0,%) x [0,1]. By a straightforward application of Lemma 7, the triple
(§;+%:%,) is seen to be separately exchangeable, in the sense that
(glf'l'l, §(£, x fz)‘l, szzl) d .88, (5.9)
for any transformations £, and £, of [0,1] which permute disjoint dyadic intervals
of equal length. Here the transformations of ;l and 4'2 are of course in the
first coordinate.
The distribution of (§l,€,§2) is a mixture of ergodic exchangeable
distributions , and since § is ergodic, it retains its distribution under a.e. 0.
Note also that the projections

t1= 25, 3= 15 o (5.10)
1 Jj 13
of § and ¥, onto (0,m) x[0,1] are invariant under the transformations in (5.9),

!
i1

and hence a.s. non-randam under a.e. Q. Finally, the r.v.'s 'Di and'\l:'i are clearly
a.s. distinct under a.e. Q. Fixing a measure O with the above properties, it is
clear from Lemma 1 that we may redefine the r.v.'s # and o, such that the
distribution of ({1,5,;2) becames Q.
Since ;i and ;i are a.s. non-random, they may be vritten in the form

¢ = 1§zsri' K g = jEJ"rB"’;". a.s., (5.11)
for same fixed numbers c, and c} in [0,1]. Comparing with (5.10), it is clear
that there exist some random permutations ("i) of J and (x:'.') of J', such that

¢ = oxi, c:',’ = u"‘J! a.s., ieJ, jeJ’. (5.12)
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Defining
= , '=g',, iey, jeJ', 5.13
T; U"i 3 %) J ( )
and noting that the pair (;1';2) is jointly exchangeable, we may conclude from
(5.8) and Lemma 12 that the r.v.'s ‘ti and‘t:i are independent and U(0,1).
To finish the proof of (1.1), it remains to show that the r.v.'s
- * - = [} s N '

are a.s. non-random. But this follows from the ergodicity of (§l,§(§2), since
the quantities in (5.14) are a.s. invariant functions of ((1,5,(2) , in the sense
of the transformations in (5.9). For example, aij=§{(1.'i,t:'j)} a.s., where T,
and t.'.i are a.s. uniquely determined by the relations

G {riep) = L{a e} =1 as., ied, jer.

Conversely, it is obvious from (1.1) that any random measure § of this
form is separately exchangeable. It remains to prove that £ is ergodic when (1.1)
holds with non-random coefficients aij’bi'b;'i’cio' i,jeN. By lemma 4, it is then
enough to construct another random measure £, as a fixed measurable function
of € and same independent U(0,1) r.v. ¥, such that § and € are independent
with the same distribution. Since the last term in (1.1) is non-random and
measurably determined by §, it may be omitted for the sake of simplicity.

We construct gby letting the r.v.' 13 /ll /3] ,c , i,jeN, be defined
as in the preceding argument, introducing an independent set of independent
U(0,1) r.v.'s a’i,“b‘i, i,jeN, and putting

T - i_ z."ij‘&. 2 + 2_‘{‘33. (J&,\ 2 +p (AxSa._)}. (5.15)
Comparing (1.1) and (5,5) (the former w:.th coefficients a, 15 bl bJ, ieJ and jeJ'),
it is clear that there exist some randam permutations (¢;) of J and (’(3) of J',
satisfying (5.13) and (5.14). Defininc

T - ?r;i, ‘%5 =%,, ie), ja, ] (5.16)
we may then rewrite (5.15) in the form
T-= 21 ‘138’8’ +2{b ‘5'1‘ xA) + b'(AxS%J..) a.s. (5.17)

'Ibprovethatgtasthedesuedpmpemes, it is hence enough to show that the
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r.v.'s -‘Ei and %3 are independent U(0,1) and independent of €. But this is
équivalent to showing that they are conditionally independent U(0,1), given §,
which follows via (5.16) fram the corresponding property for the variables
q
~ ~, . D
o; and °j‘

Proof of Theorem 2. Assume that € is a jointly ergodic exchangeable randam

measure on [0,1] 2 letting D denote the diagonal in [0,]]2, we define § =
(0® (- x[0,1]). By Lamma 6, the diffuse component of £, is ergodic exchangeable
along with €, and by Lemma 11 it is then a.s. of the form cA, for some constant
c>0. Hence the diffuse camponent of DE is a.s. of the form cA, in agreement
with (1.2). To simplify the writing, we may henceforth assume that c=0.

Next we note that § is separately exchangeable on every product set BxB°,
such that either B or B is a dyadic interval. Applying Theorem 1 with different
choices of B, it follows easily that

™f x [0,1) (0°¢) =A xm,,  ([0,1] 1) 0°) =MxA a.s., (5.18)
with M, and M, as in (5.1), for some random measures 7, and %, on [0.1]. But
(08 o x[0,4) = (0§ (0,1 xM) =0 a.s. (5.19)

since D§ is a.s. diffuse, and therefore (5.2) and (5.3) remain valid in the
present context. In particular, it is seen as before that (Mix MCZ:)£=c'12 a.s. for
same constant c¢'>0, and we may henceforth take c¢'=0, for convenience.

As before, we may write £ in the form (5.5), except that now we take o!=0.

J 3]
for all j. We may further assume that the sequence

.=f. +A+ . tel..). 3
rJ P] PJ ? (“13 “Jl) ’ JEN,
is non-decreasing, and define J={jeN; rj >0}. From this point on, the proof

follows closely that for Theorem 1, so we omit the details. a

The two representation Theorems 1 and 2 have many interesting consequences.
Here we shall merely single out a few facts which will be needed for the proofs
of Theorems 4 and 5. The first of these relates the three notions of joint,
separate and conplete exchangeability for randam measures & on [0,1]%, and may

be of same independent interest. For convenience, we shall write
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Flasat)=f(atas), £, (@t)=E{s}xar), F, (ds)=Fasx{t}), (5.20)
and define M,=~{ad,; a0, te[0,1]}.

Lenma 20. For any random measure £ on [0,1]2, conditions (i)-(iii) below are
equivalent:
(i) € is completely [ergodic] exchangeable,
(ii) € is separately [ergodic] exchangeable, and w.p.l, ss,gser‘(l for all s,
(iii) § is jointly [ergodic] exchangeable, £€D=0 a.s., and w.p.l, €s+'§;6»4£1
and £ AF=0 for all 5.

Moreover, condition (iv) below implies (v), where

(iv) € is jointly exchangeable, €D=0 a.s., and w.p.l, es+€‘se«l for all s,
v) € d €, and (§,8) is campletely exchangeable in w1={(s,t); O<s<t<l}.

Proof. Since clearly (i)=»(ii)=»(iii), it is enouch to show that (iii)=p(i)
and (iv)=p(v). The two proofs are very similar, so we shall only prove the
latter implication. Thus assume that § satisfies (iv). Since the conditions
in (v) are stable under convex cambination of distributions, we may add the
hypothesis that € be ergodic. By Theorem 2, £ must then be of the fomm
£ = g{aj;crjlrj + bjsrj’cj} + X, (5.21)
for some oconstants aj,bj,czo, jeN, and some independent U(0,1) r.v.'s O'j.‘t'j.
jeN. The conditions in (v) are further stable under addition of independent
random measures, as well as under nonotone convergence, so we may consider
each term in (5.21) separately. The case §=c) being trivial, it remains to take
E=a8 .+ bsr'd, (5.22)
for some constants a,b>0 and some independent U(0,1) r.v.'s oand T. In this case,
(&%) = (b, + bad, (5.23)
20 E Q‘é' follows from the fact that (o,T) d (v,0). To prove that (€,%) is
campletely exchangeable in LY it suffices to note that the pair (o,%) is
uniformly distributed in [0,1]2, so that (o,%) is conditionally uniform in W

1'

given {ac‘t}, while (7,0} is conditionally uniform in W, given {r<o}. e




remaining possibility o=T has of course zero probability. D

For subsequent proofs, we shall also need the following two rather technical
results. In the present context, the notions of separate or joint exchangeability
of a vector valued random measure ;=(§l,...,g4) on [0,1]2 refer to the two
coordinates of the unit square, rather than to the four components of the vector.
Thus we are requiring condi'tions of the form

&exa™, .., Bexo™ @ @b, (5.24)
where f=g in the case of joint exchangeability. We shall ﬁtrtl’lerusemlardthe

notation of (5.20), in their versions for vector valued measures.

Lemma 21. Le;§£=(ﬁl,§2,53,§4) be a separately exchangeable R:-valued random

measure on [0,1]2, whose camponents are a.s. mutually singular, and assume that

w.p.1, for every se[0,1],

B +E 7O EEM  and E_+E_# 0> e, (5.25)
Then ;4 is conditionally separately exchangeable, given (§1,€2,£3) . while gl
[95_32.] is conditionally exchangeable in the first coordinate, given (€2.€3)
[or €187, respectively].

Proof. Since any a.s. property of £ is preserved under conditioning, and

since the asserted properties are stable under convex combinations of distributions
for £, we may reduce to the ergodic case through conditioning on the invariant
o-field for €. In that case, § has a representation as in Theorem 1, but with
non-randam Ridvalued coefficients. From (5.25) plus the hypothesis of singularity,
it is clear that §! ani (¢',6%,¢%) are represented in terms of disjoint and hence
indeperdent sets of r.v.'s T; and ¥}, 50 §" and (¢',5%,6”) must be independent.
Thus the conditional distribution of &), given (£',82,8°), agrees with the
unconditional one, and the first assertion follows.

Next oconclude from (5.25) and the singularity hypothesis that the sets of
r.v.'s ‘t'j in the representations for gl and (62,53) are disjoint and therefore
independent. Hence ll must be of the form
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1 _ % S z 2
= 2 a, + b (AxJ_) +cX° a.s., (5.26)
57 T M%e T £,

where the r.v.'s ‘ti are independent U(0,1) and independent of (E2,§3) and all
the o;. By (5.26) and Fubini's theorem, it follows that §! is conditionally
exchangeable in the first coordinate, given (52,53) and the o;, and the assertion
for gl follows by the chain rule for conditional expectations. The same proof
applies in the case of ?2. u

In stating the next result, we shall use the further notation E=§+E and
Es = gs * §s»"

1.2 3.4 - 4
Lemma_22. let §=(§7,67,67,8") be a jointly exchangeable R, -valued random

measure on [0,1]2 with (§1+§2+§4)D=0 a.s., and such that EL<F°, '€l+g2, '§3 and 24

are a.s. mutually singular. Further assume that w.p.l

1 ~2 =4 <1 =2 -3 -4
Bt Bt F0 > B+ R +E oMy, se[]]. (5.27)

1. 2.3

Then §4 is conditionally jointly exchangeable, given (E™,E ,€7), while (EI:EZ)

is conditionally exchangeable in the first coordinate, given §3.

Proof. As in the preceding proof, we may assume that £ is ergodic, and
hence has a representation as in Theorem 2, but with non-~random Ri—valued
coefficients. The first assertion then follows as before, while the second one
is obtained from the fact that (El,'EZ) has a representation

12 2
€8 = 2 (a;,a)8,  + 2 (b;,b]) (Ax5_) + (c,c))° a.s., (5.28)
i i1 i i

where the coefficients are constant vectors, while the r.v.'s ‘cl and o, are

independent U(0,1), and such that thra"‘!,'i are independent even of 53. O
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6. EXCHANGEABILITY IN A STRIP

The purpose of this section is to prove Theorem 3, which characterizes the class
of separately exchangeable random measures on the strip R+><[0,1] , and its
subclass of ergodic measures. Though Theorem 3 is not needed fomau; for the
proofs of Theorems 4 and 5,. its demonstration in this section will prepare the
reader for the partly similar but more subtle arguments required for Theorems

4 and S.

For the technical reasons explained earlier, we shall still take the notions
of exchangeability, invariance and ergodicity for random measures to be defined
with respect to the groups of measure preserving transformations of R_or [0.1]
which only permute finitely many disjoint dyadic intervals of equal length.

Proof of Theorem 3. Assume that £ is a separately exchangeable random

measure on R+x[0,l]. To prove that £ can be represented as in (1.3), we mav
assure by Lemma 3 that € is ergodic, and prove instead that (1.3) holds with
o, ¥ and 1:heﬁj non-random. In that case clearly h and all the fj and g, reduce
to functions of one variable only, which we denote by the same letters, for the
sake of economy.
In analogy with (5.1), we introduce the countable random sets
M = {ser,; §({s}x[0,1])>0}, ), = {te[0,1]; &r, x{t])#0]. (6.1)
Applying Theorem 1 to the restrictions of £ to the rectangles [0,n] x [0,1], it
is seen as in (5.2) that
o7 x[0,17)€ = Axn,, (R+$<:§i§ =qxA  as., (6.2)
for suitable random measures 7, on R_and %, on [0,1]. In particular, we get
(NqXM§)€=c32 a.s. for same constant c»0, which yields the last term in (1.3).
In the seaquel, we may assume that c=0.
Since £ is exchangeable along R,, we may next conclude from Lemma 17 that,
with @ given by (3.9), the random set M={tz[0,l]; P> 0} is a.s. covered by

some distinct [0,1] -valued r.v.'s Ty+Tyre+s Such that the associated secuence
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rj=?1' » JeN, is non~increasing. Since the rj are clearly invariant functions of £,

theyjrmst be a.s. non-randam because of the ergodicity of €, and the same thing

is then true for the index set J={jeN; > 0}.
Pmceedingasintheprwfof'meorenl,mmynextuselama'itoconstmct

an auxiliary point process

$= 23, =25, . (6.3)

363 %3'T5 %5 de ©30TyrC
with a.s. distinct marks xj in [0,1], JeN, and such that the pair (&) is

ergodic exchangeable, in the sense of the mappings (€,)—» (§(f; x fz)-l. Cf;l) .
Here £, and f, are measure preserving transformations on R, and [0,1],
respectively, of the special permuitation type. The second expression in (6.3)

is obtained from the first one, if we apply a suitable randam permutation (Nj)

of J, to make the quantities cj=l _a.s. non-random. Note that the points ‘CJ'.=‘L' '
will be measurably determined a.s. by (£,{). From (6.2) we conclude that

sofnax{tiph =b2d as., jeI, (6.4)
for some random variables bjz_o, and since the latter are clearly a.s. invariant
functions of (§,4), they must be a.s. non-random.

Next we note that #Ml is invariant and hence a.s. constant, so that we can
write M1={0'i} for same sequence of a.s. distinct r.v.'s ;. By (6.2), ve may
further write w.p.l, simultanecusly for all i,

E{oyx-) = Zaust +Z lk?:_k + piA (6.5)
in terms of suitable €~measurable r.v.'se 5 120, and Pix€ €[0,1] . Note that
the 't::!l and Qix may be taken to be a.s. dlstmct for fixed i, and that we may
assure ¥;,>¥;>... a.s. In fact, Lemma 17 shows that we may choose the entire
collection of r.v.'s Qix’ with arbitrary i and k, to be a.s. distinct and
different fram the 1::').

We shall now use the quantities in (6.5) to construct a marked point process
1\=Z$di,‘,i along R,, where the marks J, are defined by

with ’
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. p; = €oyxlo.1) =p¢ +2j‘.¢ij +§ LA (6.7)
Thus the space of marks is given by
J N
K= (0,)X R XK, xR}, (6.8)

and is certainly Polish. Our only reason for including the redundant mark s
in (6.6) is to make sure that"' will be finite on bounded sets, in any natural
coplete metrization of K. We note that the coefficients “ij' xi.k anmd (3'1 in
(6.5) may be measurably recovered from the marks & in (6.6), through suitable
projections which we denote by fj' 9 and h. Thus
“ij = fjwi)' xik = gk(ii), pi = h(li). (6.9)

From the separate ergodic exchangeability of (§,§), we may conclude by
means of Lemma 6 that % is ergodic exchangeable along R, . Indeed, the hypothesis
of Lemma 6 is fulfilled in the present case, since r', when regarded as a function
of (€,%), is clearly invariant under measure preserving transformations of the
special permutation type along [0,1]. Thus Lemma 13 shows that v] is Poisson,
with an intensity measure of the form AXV. By the invariance of 7, it is
further seen that the exchangeability of (§,%) along [0,1] remains conditionally
true, given 7 In fact, the sequence of pairs (o'i,ai) may clearly be chosen to
bev,-measurable, in which case the exchangeability of (§,§) along [0,1] is
even uuemﬂ&rcnnditimﬁngwithrespecttotherandcmele!entsciarﬂﬂi.

By Lemma 6, the conditional exchangeability of (E,§) carries over to the
pair of marked point processes (§,§') with &' given bv

' - 5 ,
5 %712 ik ik %

where the second summation extends over indices k with 11k>0. Using Lemmas 12,

(6.10)

3 and 1, we may conclude that (6.10) remaing a.s. true with the r.v.'s ?11(
replaced by some ?ik' such that all the tf'l and ?f:k are independent U(0,1) and
independent of 7). Comparing the two versions of (6.10), it is clear that even
(6.5) remains true with ?Lk replaced by 95{. This shows that E has the a.s.

representation
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€ =§‘§‘ £ (0i)sci’t5 + %; gk(\’i)so_i'?ik + E h(9,) <Jdix )+ Jij(,\xSt:,j) ,(6.11)
in agreement with (1.3). Note also the r.v.'s in (6.11) have the desired joint
distribution, except that y is a Foisson process on the 'wrong’ space R, x K.

To attain a camplete conformity with Theorem 3, we add an extraneous point
2 to K, and note that a measurable mapping T: R,— K,=Ku{3} exists, such that

xr'ldv on K. The induced mapping T' of Rf_ into R x K, will then transform any

unit rate Poisson process on Rf_ into a Poisson process on R x K with intensity
AxV. By Lemma 1, there further exist some pairs of r.v.'s (di,@i) , ieN, which
are independent of all ‘t:'i and ?ik’ and form a unit rate Poisson process ']' on
Ri satisfying r"'r'-1=n a.s. on R x K. Defining

f:'j = fj.'r, gl'( = gk.'r, h' = heT, (6.12)
with the added convention that fj (3);-gk(3)§h(3)=0, it is clear that (6.11) remains
true, with the objects fj’gk'h' o and L] replaced by their 'primed' ocounterparts
f:'i, gl'(, h', ai and OJ!_, reprectively. This completes the proof of the representation
(L.3).

In the other direction, it is clear that a random measure £ of the form

(1.3) is separately exchangeable. The ergodicity of £ when « and the f3; are
constants will follow from Lemma 4, if we can only produce an independent copy
g"=F(&,¥) of §, with Y a U(0,1) r.v. independent of §, where the measurable
mapoing F is not allowed to depend on the particular functions £, g, h and
coefficients /;j occurring in (1.3). Our construction of §" will proceed in two
steps, where we first construct a random measure §'=G(§,¥') fram £ and an
independent U(0,1) r,v. ¥', such that €' has again a representation (1.3), with
the same functions and coefficients as for & and the same r.v.'s T but with
the set of r.v.'s di' "i and Pix replaced by a new collection o)!‘,ii,?ik, i, keN,
which have the same joint distribution but are independent of € and the ‘rJ
As before, the mapping G is not allowed to depend on which particular functions
and coefficients occur in (1.3). The existence of such a mapping is guaranteed

by Lemma 10 (withots(‘tj)), where the crucial condition (2.10) holds by Lemma 18,




§ince E has conditionally stationary independent increments, given the sequence
(‘tj).

The second step in our construction of E" uses the method already employed
in case of Theorem 1. Thus we first introduce a sequence of r.v.'s YJ:, j&J,
defined as the 1'] of Lemma 17, and note that the ’(j are measurably determined
by €'. Canparing with the representation (1.3) for €', it is clear that 'tj=)' ‘

b

a.s., j&J, for some random permutation (nj) of J. let us next introduce a

sequence of independent U(0,1) r.v.'s Ui,ti,..., independent of everything else,

and define the new random measure

41

"=g+ e CxfvHx(d, - 3. (6.13)
£ = §{ g x (& - 9} 3

Then ¢" has a.s. the same representation (1.3) as €', except that each ‘t'j is
replaced by the corresponding quantity 't:'j=1' . Moreover, (6.13) exhibits €" as
a fixed measurable function of §' and Yi,l’i.... Representing ]’,Yi,’(i,... as
functions of a single U(0,1) r.v. ¥ independent of §, it is then clear that
E"=F(€,¥) for a suitable fixed F.

To check the distributional properties, note that the quantities t; are
conditionally independent and U(0,1), given § and all the o}, ¥}, ¢}, and X
In other words, they are independent U(0,1) and independent of & and all those
variables. From this we conclude that €" is independent of &, and that the two
arrays (tj'oi"’i'?ik’ i,j,ketl) and (tg,ai,Oi,?{k; i,j,keN) have the same joint
distribution. Since these are the r.v's occurring in the representations (1.3)
for € and §", even the latter are equélly ‘distributed. This campletes the proof
of Theorem 3.

a
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7. EXCHANGEABILITY IN A 7XUADRANT

In this section, we shall prove the last two of our main results, those which
characterize separate or joint exchangeability for randam measures on Ri. Much
of the preparatory work has already been done in previous sections. fet it will
be convenient to isolate same of the main steps in the form of lenmas, which may
easily be put together in the end to furnish complete proofs of the two theorems.
Since the arguments for separately and jointly exchangeable measures are rather
similar, we shall treat the two cases in parallel.

Our first lemma characterizes the camronent of & which has independent
increments, globaly or in same suitably restricted sense. Until further notice,
we shall use the notation of (5.20), and we shall write ¥ ={ad,; a,teR }. Recall
that, throughout this section, the notions of exchangeability, ergodicity,
invariance, etc., are to be understood in the sense of arbitrary measure preserving
transformations of R, which permute a finite number of disjoint dvadic intervals
of equal length. Define D={(s,t) eRi: s=t} and tk{(s.t)eRi; s<t}.

Lemma 23. Let € be a_randar measure on R%. Then conditions (i)-(iii) below
== == Ry — + —_—
are equivalent:
(i) & is_separately ergodic exchangeable, and w.p.l, (€s+§)R+<.o for all s>0-
(ii) g€ has stationarv independent increments;
2

(iii) g=7f(=,)3 di't;cx

f: R+-> R, and same random triples (Gi,‘ti,ui). ieN, which form a unit
rate Poisson vrocess on R_::. | . 4
So are the following conditions (iv)=(vi):
(iv) € is jointly ergodic exchangeable, D=0 a.s., and w.p.l, (§+&)R.<w

for all s»0;

a.s., for same constant c>0, same measurable function

v 'E d §, ard (6,5 has stationary independent increments in W;
- 2
(vi) E=F{¢ ("3)50.1,1;9(«1)5,1'61}%% a.s., for sore constant c>0, some
measurable functionsg f,q: R—R,, and same random triples (o’i,‘ri.ﬂi) '

i€N, which form a unit rate Poisson process on Pz
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Proof. Assure (i). Then Lerwa 17 shows that, w.p.l, £_ JE eMl for all s»0,
80 € is campletely exchangeable by Lerma 20. Since conversely every cormpletely
exchangeable random measure is trivially serarately exchanceable, it follows
fram the ergodicity=extremality in (i) that € is even ergodic=extreme in the
sense of camlete exchangeability. Hence (ii) follows by the obvious two-dimensional
extensions of Lemmas 11 and 13. Assuming (ii), we may next conclude from the
same two~dimensional results that

2
€ =cA +}'_' 1c,1: a.s., (7.1)

for same constant cgo and some random triples (O'i,ti,'oi) , ieN, which form a
Poisson process on R with intensity of the form A’xV. Choosing f: R,—> R,
to be measurable with Af 1=V on P,\{0}, it is then clear that £ has the same
distribution as the expression in (iii), and the corresponding a.s. representation
follows by Lerma 1. Next (iii) implies that & is separately exchanceable, and
that w.p.1, (es+‘is)n+<-. for all s30. To see that £ is ergodic, we note that
every invariant function | of € is also an invariant function of the sequence
€,,85,..., where "k denotes the restriction of the translated measure §(- +(k,0))
to the strip [0,1_]:(R+. Since the §_are i.i.d., N is a.s. non-randam by the
lewitt-Savage 0-1 law, and § is ergodic. This proves that (i)-(iii) are equivalent.
How assume instead that (iv) holds. Then even &+¥ is jointly exchangeable
by Lemma 6, so &+ is separately exchangeable on every set of the forr
(a,b) x ([0,a]V [b,m)) with a<b. Thus Lemma 17 shows that, w.p.l, the restriction
of €s+E’s to [O,a]u[b,h) belongs to 'Ml fc;r all se(a,b). Since this holds
simultaneously for all rational a and b, outside same fixed P-nullset, we get
v.p.l1, {s}c (i;i's)eMl for all s»0. Since §D=0 a.s., it follows that w.p.l
g +E M) for all s, te may then conclude from Lemma 20 that £ &, and that the
pair () is camletely exchangeable in W. -
From the obvious extensions of Lemmas 11 and 13 to W, it follows that the
diffuse camponent of (£,§) is a.s. of the form ()’,7)3\2 on W, vhere ¥ and ¥ are

suitable r.v.'s, while the marked point process q vhich describes the purely
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atomic part of (€,€) is Cox on W with a directing randam measure of the form

izxv, where V is araxmnneamonkf_\{O}. Now 7,? and ¥ can a.s, be
determined, via the law of large nurbers, as jointly invariant measurable functions
of §, =0 by the ergodicity in (i), these quantities must be a.s. non-random.

In that case, (52) has independent increments in W, and (v) follows.

Assuring (v), we get as before a representation of (£,§) in termws of
quantities ¥, ¥ and v, which may again be taken to be non-randam. The condition
£ 9% irplies that (%) € (£.6), so ¥=F, while V is svmmetric with respect
to D. In particular, the diffuse corponent of & equals ¥ a.s., in agreement
vith (vi). and we mav henceforth assume that € is purely atamic. Let us next
choose two reasurable functions f,q: P~ R, such that A(f,g)-1=V/2 on Ri\ {0}.

Introducing a unit rate Poisson process n on Ri, and writing ?i(dsdt s )= Y\(dtds ),

e define

g = JE@um-xdu) + fg(@uF(-x du), (7.2)
so that

€8 = [if,q) @l xaw + fig, ) (@wH(- x du)

5 - J 1 § 1 (7,3)
= Joey) (6 + 8 (- xaxdy),

vhere

E=maxi,an™, ¢ =R x@m™. (7.4)

Here § and §' are both Poisson processes on R. X (P2\ {0}) with the same intensity
22x V/2, and since they are further independent on IV X (R2\{0}), even their sum
rust be Poisson on the latter set, with intensity given by A>X V. Thus (£' E")
d (£8) on Wby (7,3), so €' Qﬁ °’”’\2~' and then Lemma 1 shows that even € has a
representation as in (7.2). Hence (v). inpi.i&s (vi). |

Let us finally assume (vi). Then the second and third statements in (iv)
are obvious, while the joint exchangeability of § follows from the fact that
v;=Z5C,i,,i,,,i is jointly exchangeable in the first two coordinates. To prove the
ergodicity of € in the sense of (iv), we note that the distribution of € can be
measurably constructed fram £ through the law of large numbers, since € is
dissociated (cf. Aldous'1’?)), and hence that Lemma 4 applies with h(t)=m,. Thus
(vi) implies (iv), so even the last three conditions are equivalent. n




and define §,,...,§, by (7.7). Then there exist same random measures «,, &
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To state the next result, we associate with a given random measure ; on Ri

the sets

M, = {820; £({s}xR)=ee}, M, = {£20; £(R x{t})=n}, (7.5)

M= MU Mu{s0; £{(s,s)}>0}, | (1.6)
and introduce the decomposition of § into four camponents

=0 xmE, 2 xM)E, =0y xME, g0l x)E. (7.7)

It is easy to check that the § are measurable functions of §. The following
result describes the joint distribution of the 51 when E is separately
exchangeable, and states the corresponding result for the jointly exchangeable
case.

2
Lerma 24. let £ be a separately ergodic exchangeable random measure on RS,

o

R, and V,,V, on R X (R \ {0}), such that £ and £, have a.s. diffuse components

Axeot and o, x A, respectively, while their associated point processes D
of jump positions and sizes are Cox and directed by Ax Vv, and szk. Moreover,
£, and (0 r%,¥;,¥,,&,) are both separately ergodic exchangeable, and g is
independent of (£;,§,,§,), while n, is conditionally independent of o, .5,,8
given v;, and 7, is conditionally independent of <, 6,,&), given v,
Assume instead that £ is jointly ergodic exchangeable on Rf_, and define
€1 reeeidy by (7.7), but with M, and M, replaced by M. Then there exist some
random measires /), ®, on P, and ¥ on R X (P2\{0}), such that &, ang €, have

3)!

a.s. diffuse components )xul and &, x A, respectively, while the point process Y|

of atom positions and sizes associated with (tl,'g"z) is Cox and directed by Ax V.
Moreover, £, and (#,%,¥,§;) are both jointly ergodic exchangeable, and £, is
independent of (£, ,£,,4,), while 7) is conditionally independent of (X, ,%,,&.),
given v,

In these statements, the serarate or joint exchangeability of N BN

or (“1'“2'\"‘3) is defined as in (5.9), with the functions f, and f. taken to

1 2
be equal in the joint case. For an atamic random measure g:ZujSt , the associated
j
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;.:oint process of atam positions and sizes is given by "'Z;‘tj. 05

Proof. Assume that § is separately ergodic exchangeable. Then so are
El,...,E4, as well as their diffuse and atomic components, by Lemma 6. Applying
Lemma 17 to El and €., we may conclude that, w.p.l, El([s}x- )eMl and 62(- x {t})
e»«l for all s,t»0. Thus Lemmas 11 and 13 yield the stated forms of the diffuse
and atomic components of El.and ;2' in terms of some random measures &, ¥, v
and V. Since the latter are measurably determined by &, through the law of
large nurbers, we may conclude by another application of Lemma 6 that even
('ﬁﬂtz,vl,v N is separately ergodic exchangeable.

By Lemmas 6 and 17, the hypotheses of Lerma 21 are fulfilled for the
restriction of (&,...,§,) to an arbitrary square [O,a]z, so by martingale
convergence as a—» %, we may conclude that 0;4 is conditionally separately
exchangeable, given (61,5,53) , while ;l is conditionally exchangeable in the
first coordinate, given (€2,§3) . Since §, is ergodic, it follows from the first
statement, as in case of Lemma 9, that §, is independent of (§l,§2,§3). Since
(% ,V)) is invariant under measure preserving transformations in the first
coordinate, the exchangeability of ;1 remains valid under conditioning with
respect to (¢, .Ez.ij). Even n, is then conditionally exchangeable in the
first coordinate, given (041,91,62&3). By Lemma 13 plus the law of large numbers,
%), must then be conditionally Poisson with intensity Ax V), just as under
conditioning with respect to Vl. Thus ?‘1 is conditionally independent of
(¢ ,§,,€;), given v, and the same argument shows that 7, is conditionally
independent of htz,ﬁl,%), given v,.

Bssuming instead that £ is jointly ergodic exchangeable, and using M
instead of Ml and M2 in the definitions of 61,...,54, it is seen fram Lemma 6
that &, and (el,‘i'z) as well as their diffuse and atomic parts are jointly
ergodic exchangeable. Proceeding as in the proof of Lemma 23, one may easily
check that the hypotheses of Lemma 22 are fulfilled for the restrictions of
£,,.../€, to an arbitrary square [o,ajz. In particular, (5.?2) rust then be
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exchangesble in the first coordinate, and w.p.l., (§+8,) ({s}x-)eM, for all s,

80 using Lenmas 11 and 13, we may conclude as before that €, and §, have a.s.
diffuse components of the form 31(0:1 and «2:(). respectively, while‘v' is Cox

with directing random measure of the form AxV. It is further clear from Lemma 6
and the law of large numbers that even (dl,dz,V,%) is jointly ergodic exchangeable.
The independence and conditional independence assertions mav be proved as in the
separately exchangeable case, except that Lemma 22 should now be used instead

of Lemma 21. g

The structure of the last camponent in the preceding decomposition of &
was essentially analyzed already in Lemma 23. We proceed to derive representations
for the sequences (al,g,vl,vz,g) and (“1."2.9,‘3) occurring in Lemma 24. As a
first step, we shall then consider marked point processes on RZ of the form

£=3 53
= , (7.8)

where o'l<o'2<... and Tl<1'2< «vo, While the “ij take their values in same Polish

space K. Here we may write

L 3
A= («_; i,jeN), n= 2 3 (=36 (7.9)
1 =t Yy
and note that the array A and the simple point processesr‘and § are uniquely

and measurably determined by €.

Lenma 25, Fix a Polish space K, and let € be a separately ergodic exchangeable

point process on Rixl( of the form (7.8), where d;<0,<... and T, «T, <... Then
the random objects A, m and § in (7.9) are independent, and A is separately
ergodic exchangeable, while n and § are hamogeneous Poisson processes on P,.

Assure instead that § is jointly ergodic exchangeable, and that 1= §. Then

A ﬁt, are independent, and A is jointly ergodic exchangeable, while ') is
homogeneous Poisson.

Proof. Assume that € is separatelv ercodic exchangeable. 'I‘hen?,and(are
ergodic exchangeable by Lemma 6, so both are hamogeneous Poisson by Lamma 13.
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Since § is invariant under measure preserving transformations in the first
coordinate, € remains conditionally exchangeable in that coordinate, given &.
Using Lemmas 8 and 14 plus the fact t.hat'} is ergodic, we may conclude that 7
is conditionally homogeneous Poisson and independent of A, given §. Hence 7) has
the same conditional distripution, given A and §, and since 7 is ergodic it
follows that | is independent of A and §. Applying the sae arqument to §, we
may conclude that a, v) and § are independent.

From Lemma 14 it is further seen that A is separately exchangeable. To see
that A is even ergodic, let 7 denote the invariant d~field induced by A, and
conclude fram Lamwma 7 that € remains separately exchangeable, conditionally on 7.
Since E is ergodic, it follows that £ is independent of J, so 7 must be
independent of itself and hence trivial.

In the jointly exchanceable case, we first note that 11 is ergodic exchangeable
by Lemma 6, and hence must be hamogeneous Poisson by Lenma 13. Next we introduce
the randam cbjects

Va ='1[0,a]. "a = [0,a]n. qg = (a,B]n, O<a<bgos (7.10)
(n)
A

A= (ﬂij: i,3ev,) . = (“ij’ i,jen), a>0, neN. (7.11)
Applying Theorem 2 and Lemma 15 to the restriction of € to a square [o,a]Z, it

is seen that Aa is conditionally jointly exchangeable, given v, vhile "a is
conditionally exchangeable and independent of Aa, given \'a. The first statement
implies that A™ is jointly exchangesble, conditionally on the event {v.>n},

and from this we obtain the joint exchangesbility of A by letting a—sse and then
n—» 00 ,

The second statement shows that ,‘a is conditionally exchangeable, given v,
and A , 50 if 0<a<b<we, it is clear that " is conditionally exchangesble,
given v,, 1,: and A,. Here we may let b—+se, and conclude-by martingale convergence -
that rf’ is conditionally exchangesble, given ¥,, %% and A. Taking conditional
expectations, given A, and letting a-—»#e, it follows that i is oonditionally
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exchangeable, given A, and sincef,is ergodic, it must then be independent of A.
It remains to show that A is ergodic. But this follows by same argument as in

the separately exchangeable case. . 8]

Our next aim is to combine the results of the last lerma with those of
Section 4, to obtain explicit representations of certain exchangeable marked point
processes £ on Ri, in terms of suitable Poisson processes and i.i.d. seguences.
Since the projection of § anto K. is no longer assumed to be locally finite, we
shall need to introduce an extra mark in each coordinate, so that € will take

the form
: 3
€= .
i=1 J=1 a'i’tj r“ivﬂjtrlj
Here the marks « and/)j are assumed to be R -valued, while the ,ij take their

(7.12)

values in same Polish space K. We shall further assume that the random measures

ad oo
= 213 ; wgn}, = Y {85 _; p<n]l, nen 7.13)
I :él{ CA 1—} ;n JEI{ Y PJ‘—} ! (
are locally finite simple point processes on R, . Note that the notions of
exchangeability and ergodicity for € are defined with respect to transformations

of the first two components o; and ‘tj in (7.12).

Lemma 26. Fix a Polish space K, and let € be a separately ergodic exchangeable

point process on R:xx of the form (7.12), such that the N, ad $, in (7.13) are

locally finite simple point processes. Then there exist same measurable mappings

f,9: R+ R,_and h: Rix[O,l]-+ K, some_independent U(0,1) r.v.'s J},, i,jeN,

and same independent pair of independent secruences ((of,ec)); ieN) and ((13 ,Pé): jeN) ,

which form unit rate Poisson processes on Rf_, such that (7.12) holds a.s. on

4 : 1 1] )
R, xK with o, Tj’ ”, Pj and rij replaced by o5 ‘t:'i' f(ﬂi), gy!%) and M"i'l’j’rij)’
respectively.

Assure instead that € is jointly ergodic exchangeable, and that (7.12) holds

with o;=T; and «.=f3.. Then there exist some measurable mappings f: R,— R, and

2 .
h: R, X[0,1]~» K, same _independent U(0,1) r.v.'s ¥i{¥;s 1¢i<j, and some
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independent seguence ((oi,‘ti); ieN), which forms a unit rate Poisson process on

2, such that (7.12) holds a.s. on Rixl( with o;=T, o=} and 'ij replaced by
o{, f(-ti) and h(u{,-q,xij), respectivelv, where r]'_l_=_0

Proof. Assume that € is separately ergodic exchangeable. By Lemma 25, the
point processes v and ;n are homogeneous Poisson, say with intensities a and bn'

respectively. Consider n so large that a M bn>0. Then we may write

o9
):S . =23, ., neN, (7.14)
i=1 %ni j=1 "nj
where o;u<0'n2<... and‘tl< 2 Here
.= , = ‘Z' ' i,j,neN, {7.15)
ni " %y T T gy

for suitable random indices L and "r'xj’ and we may introduce the corresponding
random marks

= ,  i,3 .16
“ A’J P”' ’ ynlj r’\ni"‘r;j 1,3,neN, (7.16)

and form the arrays
D = g Wiy e Be3ome. (7.17)
By Lermas 6 and 25, the arrays x(“) are separately ergodic exchangeable,
and they are further nested in the sense of Section 4. Hence there exist by
Lemma 19 same measurable function F: R x10,1]— R2 xK and sore r.v.'s «'., Fnj
71_'11], i,j,neN, which are independent for fixed n and uniformlv distributed
on the intervals [O,a ) [O,b ] and [0,1], respectively, such that
(n)

= Flx!, @mm a.s., i,j,neN. (7.18)
Since o does not depend on j, and simildrly for Pnj' we may rewrite (7.18) in
the form
= fley) e Bog = 9By iy = hiegs Pry¥niy) a-ser Limed, (7.19)
2

for some measurable functions f,q: R+—> R, and h: R; x[0,1]—+ K (cf. Lemma 2.4

in Kallenberg (12)) . For definiteness, we may take

f(x)=ew for x>sup a ., gl{y)=s for ys»sup b . (7.20)
n

Since x "\n and ; are independent for fixed n by Lemma 25, the sequences

(dni) and (‘t ) are independent, and we may take the array (u' 'Pnj"r‘)lj)' i, jeN,
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to be independent of all dni and fnj‘ The Oni form a Poisson process with
constant intensity a_, while the «'. are independent and uniform on [O,an], 80
the pairs (Gni"‘r'li) , ieN, form a unit rate Poisson process on R+x[0,an] (cf.
Kallerberg(g)
process on R+x[0,bn], and the two sequences are mutually independent and
independent of all ‘}'uj' i, jeN.

Let us now introduce r.v.'s o{, d]!_, ‘t:'.', Pf'l' 'ij' i,jeN, on an arbitrary

). Similarly, the pairs (Tni'P;xj) , jeN, form a unit rate Poisson

probability space with the stated joint distribution, and define &' as the

4 3 ’
double sum in (7.12), but with di’tj’“i'Pj and 'ij replaced by o’i, ‘l::'.l, f(qi) '

. 2 2
g(pi) and h(ﬂi,p:'-'.l]!_j), respectively. Then g' ge, on R+x[0,n_] x K for every n,
so a monotone class argument shows that in fact &' g; on RixK. By Lemma 1,
3 1 ' 3 P

we may then redefine the r.v.'s d]!_, ‘tj, Iy ,]:',, '(ij with the same joint
distribution, such that £'=g holds a.s. This campletes the proof in the separately
exchangeable case. The representation in the jointly exchangeable case is

obtained in a similar way.
We shall further need a simple technical fact:

Lemma 27. Let K be a kernel fram R+intosanePolish space S, and let 9 ¢ S.

Then there exists some measurable mapring f£: ni—p Sv{2}, such that

A€, Nt =R, on's, us0. (7.21)

Proof. Use a Borel isamorphism to reduce to the case when S=R,. Then take

(7.22)

inf{t:o; K(u,[0,])>v , v< K(u,R)),
f(u,v) = T

2, v > K(u,R,). o

Proof of Theorem 4. Assume that § is separatelv ergndic exchangeable, and

define 51""'54 by (7.7). Then Lemma 24 shows that £4 is also separately ergodic
exchangeable and is independent of (£ ,§,,§,). Moreover, 64 satisfies condition
(i) of Lemma 23, and hence must have a representation as in condition (iii) of
the same lemma, corresponding to the second and third terms of (1.4). For
convenience, we may henceforth assume that £4=0.
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Next we conclude fram ILemma 17 that

M ={820; >0}, M, = {0 oL> 0} a.s., (7.23)
where
e = iq» ok ((k-1,X]), 820, , (7.20)
n-no
Qi = Limsup H zc.y.?t((k-l,k]) . 0, (7.25)
npo k=1.
and that there exist same secuences of a.s. distinct r.v. so'l,O',... and

0y,0,..., such that M c{o;} and MZC{O'J!‘! a.s. The cardinalities of M, and M,
are invariant functions of £ and therefore a.s. constant, so by lemmas 6 and 13

P

it is clear that each Mi is a.s. epty or a.s. infinite. In the latter case,

we may assune that

gty

n = {ai} or M, = {O'J!} a.s., (7.26)
and define
i‘ Py = 96 ;P = ?G,, i,jen. (7.27)

We further recall fram Lemma 1'7 that the sets {s30; p_ >€} and {£0; pL>e} are
a.s. locally finite for every €>0.

let ¢, &', ¥ and ¥' denote the measureso(z, -(1, 92 and vl of Lerma 24.
| Since §1 is supported by R, XM, and Ez by M %R, it is clear from the law of
large numbers that o and «' are a.s. supported by M1 and ”2' respectively, while
*{ Vand V' are a.s. supported by Mlx (0,m) and M, x (0,08) . Ve define for i,jeN

= 1= = " s . = R

o =x{o.}, xi=w{ol}, Vi=Y({oihxe), ¥ ""{":'i}" P Ej{(oi,o:'.l)}, (7.28)

and introduce the marked point process

* ; :El =1 1'0"?1'93 'v v Y -2
If I} ancd M, are a.s. infinite, it is seen frcm Lenma 6 that § is separately

1 ergodic exchangeable in the first two coordinates. Hence there exist by Lemma 26
same measurable functions f: Rix[o,l]—’ R+ and h,h': R+—> R,, same kernels G

and G' fram R, to (0,m), some independent U(0,1) r.v.'s &, i,jeN, and some
independent pair of independent random sequences ((ti"’i)" i€N) and ((‘tj!n!]!),- jer),

vhich form unit rate Moisson processes on Rf_, such that (7.29) remains a.s. true
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w:I.thOl,d o() ,’ andl' replacedby‘r 1" h(l’),h (1"), G(‘l’),(‘ (‘\’~')

and f(dl,O'.,C. J respectlvely. In view of (7.28), we thus have, a.s. for i,jeN,
afT}=nd,), e{zi}=h' @), YHTIxIGW,) . V' ({Ejx-)=C" ),
§y{lm =ty 95,6, '
If instead only M, is mfmite while M,=f a.s., then £l=€3=0 a.s., and we

(7.30)

may consider in place of § in (7.29) the marked point process

[

17 Do 0wy s
which by Lemma 6 is ergodic exchangeable in the first coordinate. Hence Lemma 13
shows that {, is hamogeneous Poisson, so there must exist some measurable function
h: R,—» R, scome kerpel G from R, to (0,0), and same unit rate Poisson process on
R with atom positions (r,#;), ieN, such that (7.31) remains true with oy, e and
v; replaced by 7;, h(#}) and G(¥,), respectively. Thus (7.30) still holds in
this case, with 1' 1}' and C as before, and with f=h'=C'=0. The same argument
applies to the case when M1=¢ th.le M, is infinite a.s. Finally, (7.30) holds
with f=h=h'=G=G'=0 when H1=Mz=ﬂ a.s.

By Lerma 27, there exist some rmeasurable functions g,g': 2—>R , such that

Agix, N7 = e, A(g'(x,-)) =G'(x) on (0m), xeR . (7.32)
Let us further introduce same mutually independent random sequences ((d.k,x.k);
keN) and ((o'k,x’k), keN), jeN, independent of the r.v.'s T 1: ', 1} 0 C

i,jéN, such that each sequence forms a unit rate Foisson process on Ri. Defme

'21 kZ_lg (O'J'Jk)&' oty Zlh' (3) (Ax3_ .), (7.33)
= e
[ )
€= X gi8y,%, )8 + ZthS xA). (7.34)
i=1 k=1 Ti%xk =1

Fram (7.30) it is clear that the diffuse components of fi and §, equal a.s.
Ax “ and o, X A, respectively. Moreover, the point process 'li of atom positions
and sizes associated with gi is conditionally independent of ('&.§5153) and
Poisson with intensity Ax ¥,, given the r.v.'sT; and "i' Thus 7li and («1.(5.53)
remain conditionally independent, given Vl. Similarly, the point process t,i
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asgociated with gi is conditionally independent of (ﬂz,ei,€3) , given v, and
l;oisson with intensity 921(3. Since these properties determine the conditional
distribution of (ﬁi,ﬁi) given ("1"‘2”1"'2'53) , and are the same as for (51,52)
by Lenma 24, it follows that (8,658 £ (€,6,,§,). By Lema 1, we may then
redefine the r.v.'s oj,, dék' xik and xﬁk with the same properties as before,
such that §;=§, and §;=¢, a.s. This completes the proof of (1.4) in the ergodic
case. The representation formula extends immediately to the non-ergodic case,
by means of Lerma 3.

Conversely, the separate exchangeability of a random measure £ with
representation (1.4) follows from the corresponding invariance properties of
Poisson processes. 1£6¢ and ¥ are a.s. non-random, then £ is dissociated in

the sense of Aldous(l'z)

, 80 its distribution can a.s. be reconstructed from
a realization, via the law of large numbers. Hence £ is ergodic in this case,

by Lerwa 4 with h(t)=m,_. a

Proof of Theorem 5. Most of the argument is very similar to that of the

preceding proof, so we shall only indicate the changes. Assure that E is jointly
ergodic exchangeable. By Lamma 6, the diffuse mass along the diagonal D is ergodic
exchangeable, so by Lemma 11 it is a.s. egual to a constant tires )D‘ The
remaining part of §4 fulfills the condition (iv) of Lemma 23, and hence must
be representable as in condition (vi). Thus §, gives rise to the second, third
and last terms in (1.5), and by the independence assertion in Lemma 24, it remains
to derive the representation for (61,52,53') .

Excluding the trivial case when M=§ a.s., the only remaining possibility

is when M is a.s. infinite. We then define

. 1<
= (s,8)} + 1 = o (& +¥) ((k-1,k]) s>0 (7.35)
fa = SH(0/0) + 1 5 e (6,15 (01, =m0
and conclude from Lemma 17, applied to the restrictions of € and € to sets of
the form (s,t) x (s,t), that M={330: f’s’o} a.s., and that the sets {530; gs>£}
are a.s. locally finite for arbitrary €»0. As for M1 and M, before, we may
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choose a sequence of a.s. distinct r.v.'s Oy 10peeees such that M={ci} a.s.,
and we shall put .
Pi%o,
The randam measures (d,-t')=(d2,e(1) and ¥ in Lemma 24 are a.s. suprorted by
M and Mx(nfx{o}) , respectively. let us write
wi~oy} sg=et{oi}, V=Yg, X = {000}, 1N, (7.36)
and define
2 ZS (7.37)

i=1 j=1 'G Qs ?J '?L %] 91"13
Then & is jointly ergodic amngeable in the first two coordinates, by Lemma 6,

so by Lemma 26 there exist some measurable mapoings f: R",)([O,].J—»R+ and h,h':
bi5=5510

kicj, and same independent sequence of randam vectors (‘t‘i.\’i) , ieN, which forms

R,—> R, sare kernel G from P_ to Ri\{o}, some independent U(0,1) r.v.'s §

a unit rate Poisson process on R, such that (7.37) remains a.s. true with
o o, ct:!l, Vi and ‘ij replaced by T h(\’i), h'(tj), G(ﬂi) and f(vi,tij,tij),
respectively, where {iif_ﬂ. T™us we have, a.s. for i,jéN,

w{r}=h(¥), a'{E}=h'(4), v({g}x-1=c(a), 53{<ti,tj)}=f(al,vi,;ij). (7.38)

Py Lemma 27 there exist same measurable functions g,g': Ro—»P,, such that

A@ (x,+),90,-) 7 = G) on BZ\{0}, xeR,. (7.39)

Let us further introduce same mutually independent random sequences ((o, ,x ):
keN) , ieN, independent of all the 1' 6 ,C 37 i,jeN, such that each seaquence forms
a unit rate Moisson process on R2. Define ﬁl and §) by (7.33) and (7.34), but
with 1:' 1}' °§k and x:'.' replaced by Ty 19 K and xJk, respectively. Then
(€i,§2) has a.s. the diffuse component lx(&l, 2) . Moreover, the point process
'.]'of atom positions and sizes of (Gifé}) is conditionally independent of (%,%,,€,)
and Poisson Ax VvV, given the r.v.'s T and "i' and hence also given ¥. Comparing
with the properties of §1 and Ez in Lerma 24, it follows that ((i,§5.§3) g
(§),85,83), and bv Lemma 1 we can redefine the r.v.'s oy, and X,,, such that

equality holds a.s. The proof may now be completed as in case of Theorem 4. 0

B
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tie conclude the section by remarking that Theorem 4 could also have been
ocbtained as a corollary to Theorem 5. In fact, any separately exchangeable
randam measure £ is also jointly exchangeable, and hence must have a representation
as in (1.5). For the restriction of £ to the set
A= (“{U {[2r~1,2m) x [2n,2041)}, (7.40)
n

we then get a representation of the form (1.4). Using the separate exchangeability
plus Lerma 1, it follows that € itself has a representation (1.4). Cur reason

for aiving a direct proof of Theorem 4 is that Theorem 5 is considerably deeper.
In particular, one needs for its proof the representation theorem for (nested
arrays of) jointly exchangeable arrays, which appears to be rmuch harder than

its counterpart for the separately exchangeable case (cf. Theorem 3.1 in
!'.allenberg(n) ). Thus we did not want to hurden the proof of the easier result

by discussing cowplexities which are relevant only in a more general context.
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8. CONCLUDING REMARKS

In this final section, we shall analyze the relationship between the various
notions of exchangeability, give criteria for convergence of the seri?s in the
main theorems, and decide to what extent the functions occurring in the main
representation formulas are umque For the sake of brevity, our discussion in

this section will be rather informal, with most proofs omitted or only briefly
indicated.

1. Notions of exchangeabilitv, As explained in the introduction, the notions

of separate or joint exchangeability of a random measure € on Rf, R+x[0,lJ or
[0,1]% may be efined in temms of either
(i) the class of arbitrary measure preserving transformations of R_or [0,1],
(ii) the sukclass of transformations vhich permute finitely many disjoint
dvadic intervals of equal length,
(iii) the array of increments of € with respect to an arbitrary reqular dyadic
square grid.
Formally, (i) gives the strongest and (iii) the weakest notion of exchangeability.
However, the notions based on (ii) and (iii) are easily shovm to be equivalent,
and fram the proofs of our main theorems, it is seen that all three notions are
in fact equivalent, e shall indicate how this can be seen directlv. Cur argument
has the virtue of applying without changes to higher dimensions, where no explicit
representation formulas are known. (Given the methods and results of this paper,
one may easily conjecture what the represéatatims should be in higher dimensions,
though the expected length and complexity of any rigorous proof seem rather
discouraging.) Note that, in dimensions d>3, there are also intermediate cases
between separate and joint exchangeability to consider, namely one for each
partition of the set of d coordinates, where a common transformation is used
within each subset. We may refer collectively to these various notions of

symmetry as multivariate exchangeabilitv. A one-dimensional version of the

following result was discussed in Leawma 9.0 of Kallerberg(g) .
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Proposition 1. For any notion of multivariate exchangeability of random

measures on a Euclidean rectangle, the definitions based on (i), (ii) and (iii)

are all equivalent.

The equivalence of (ii) and (iii) is an obvious consequence of basic

uniqueness results for random measures (cf. Theorem 3.1 in Kallenberg(g)

). TO
prove that (i) and (ii) are equivalent, it is clearly enough to consider random

measures on a cube [O,l]d. Our argument rests on a simple approximation result:

Lemma 28. let f be a \-preserving transformation of [0,1]. Then there exist
same _transformations f,,fy,...: [0,1]— [0,1] of type (ii), such that f —» f a.e. A.

This is essentially a special case of a result for predictable transformations,
proved in Section 5 of Kallenberg(lo) . The next result is a simple consequence

of Lemmas 11 and 12, Recall thatafixedneasurepisasupportingmasureofa
(9)

randam measure §, if €A=0 a.s. iff pA=0 (cf. Kallenberg ™', p.103).

Lemma 29. Let £ be an exchangeable random measure on [0,1] or R,, such that

P{E#0}>0, Then A is a supporting measure for £.

We shall finally need a simple exercise on weak convergence:

Lenma 30. Let & be a randam measure on S=[0,1]d, and let f and £,,f,,...

be measurable transformations of S, such that g{fnfo £}=0 a.s. Further assume
that gf;l 9 ¢ for all n. Then even £ L S ¢,

-l. It is nxr easy to prove

; . . . ~lw

This holds since p{fn;l-p £}=0 implies P~ = pf
the proposition. In fact, assume e.g. that the random measure ¢ on [0,1]9 is
jointly exchangeable in the sense on (ii), and let f be an arbitrary A-preserving
transformation of [0,1]. By Lemma 28, we can choose functions £1/£50... Of type

- . a

(i), such that f — f a.e. A. Let A={fn—> £}. vriting £ (... X)=f (%)) . £ (%)) 3
it is clear that fg—» £ on 23, 1ow the a coordinate projections of § are again
exchangeable in the sense of (ii), and have therefore supporting measure A, by
Lemma 29, Since AA°=0, we get §(Ad)c=o a.s., so E{fg o fd}=0 a.s. lMoreover,

f(fg)’l d €. ™us Lemma 30 vields c(fd)"l g €, vhich means that § is jointly
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exchangeable even in the sense of (i). g

2. Convergence criteria. Using the criteria for the existence of multiple
(13}

Poisson integrals given in Kallenberg and Szulga , Wwe may easily decide when
the series in Theorems 3-5 converge a.s. Our results may be compared with the
conjectures of Aldous(Z) » P.139, in the special case of separately exchangeable
counting random measures on. Rf_.

It is clearly enough to consider the ergodic cases, when the r.v.'s «, /4, 4
andpl,[)z,... in (1.3)-(1.5) are constants. To simplify the notation, we may
then delete o from our formulas, so that e.q. f(u,ﬁi,dé,cij) in (1.4) will be

replaced by £, ,4,{..). For an arbitrary function £, we shall write F=ral.

17737715
For the £, g, and @, in (1.3), we define
F = ij, G=1g, B=Z[Jj. (8.1)
For functions g: Ri—» R, we define
A9 = faxax, Agv) =2gC.y), Agx) =Aa(x,:), x,yeR,. (8.2)

The function £ in (1.4) and (1.5) is regarded as defined on K x [0,1], and we put
2 2A
)Df =ADf('I"0)I fl(X) =2 fix,,°), fz(}’) =2 f(.,v,0), er€R+l (8.3)

where )2 denotes Lebesgue measure on R+x[0,]J .

Proposition 2. Consider formulas (1.3)~(1.5), but with deleted « and with

non-random ,11./32.... Then the series in (1.3) converge a.s. iff
AF +2A8 +)ﬁ+a < po, (8.4)
those in (1.4) iff _
AL+ 28 + 2R e m, Q14 Ai(&@)w so, (8.5)
Mil<fewp=Mi<t}eeo for i=1,2, and X[f; £f,vi al] <, (8.6)
and those in (1.5) iff (8.5)-(8.6) hold, and in addition

AL+ 3D€<~. (8.7)

For convenience, we collect the general facts we need ahout the a.s.
convergence of random series and integrals. Let us denote integrals with respect
to §, €xn and §%= £ag by €f, gne and €°f, respectively. Put $p(x)=l-e™%.
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Lemma 31. Letal,u,...beuxdeperﬁentR-valuedr.v s,andletgandvbe

uﬂependent unit rate Poisson processes on R, . Fix two measurable functicns
2 - oA
£: R—> R, and g: R,— R, and define gl-Azg and gz-)lg. Then
A
(a) Z“i‘” a.s. iff JE&;<w,
(b) Ef<e0 a.s. iff lf<~, and E(})(Ef)=4’(l(+of)),
. ! . 2
() &ng<se a.s. iff A{legjew}=Al<g,}es, i=1,2; X'[§: g, va,cl]<w,
{(d) ﬁzq<~ a.s. iff €v'g<~ a.s. and)DS<n.

Here (a) is classical, while (b)-(d) are taken from Kallenberg and Szulga(B) .

To prove Proposition 2, it suffices in view of the exchangeability to consider
the restriction of & to [0,1]2. In case of (1.3), we get
2
€[o0,1 _}i'_ (FO;) +GW,) + h(s,))1{o,cl} + B + ¥, (8.8)
and since the r.v.'s t}i with 0;¢l form a unit rate Poisson process on R, we
get the convergence criterion (8.4) by using Lemma 31(b).

In case of (1.4), we get
Y4 - ] [} '
£(0,9 §§ £(% 95,8, 1T v Tia} +§ Ly 1o v orel} + ¥
* 1T {90, Xy 1z, v oy pia o k30 e v o}
+)i_ {horaa} + @Y zielj}. (8.9)
By Lemma 31(b), the second and last sums converge a.s. iff X(2+?1+?1')<N .
Conrdlitioning on all the "i' 1}:'.', T; and 1.’5, it is further seen from Lemma 31(a)

that the first sum converges a.s. iff

zzxf(f i ,-)l{t vT <1}<oo a.s., (8.10)
ij

which is equivalent to (8.6) by Lemma 31(c). By the same conditioning plus
Lenma 31(a), the double sum involving g converges a.s. iff

ii', E[la}lg g8, %, ) o, <1} |9, 7] T cl} e a-s. (8.11)
Since ¢(x)<X<2f(x), this holds by the formula in Lerma 31(b), iff

% 1 AM¢ea9, )} 1{Tljcm  aus., (8.12)

which is equivalent, by the criterion in Lerma 31(b) , to
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ALAR, (rg)) < oo, (8.13)
The last condition, together with the corresponding condition involving g', are
equivalent to the remaining condition A(1AA,(§+3'))< e in (8.5). This completes
the proof in case of (1.4), and the argument for (1.5) is similar, estcept that
statement (d) is needed instead of (c) in Lemma 31. o

. Problems of uniquen'ess. Our aim in this final subsection is to examine

to what extent the representations in Theorems 1-5 are unique. The corresponding
problem for exchangeable arrays has been treated at length in Kallenberq(lz)
and since the present methods and statements are very similar, we shall only
indicate same typical results, and amit all proofs. In particular, we shall
restrict our attention to the ergodic case, in order to simplify the notation.
As before, this allows us to amit the &-dependence from formulas (1.3)-(1.5).
For a reader familiar with Kallenberg!?), the extensions to the general case
should be dbvious.

To simplify our staterents, we shall only consider renresentations which
are minimal. By this we mean that certain sets JeN or ACP associated with
the representation should satisfy

fJ=e0 = J=N, or Ah=ee => AA°=0. (8.14)

In case of (1,1), this should hold for the sets

[}
= [ieN: — fien. Q'
3, = {ien: p, + j=1“ij >0}, 3, = {jen; fl + 1§1°(13 > 0}, (8.15)

and in case of (1.2) for the set

3 = {ien; B, +py + 1;l(a: +u51)>0} (8.16)
In (1.3), we require (8.14) to hold for

3 = {3em; gy + M;>0}, 7= {n+ Zf, + 2o >0} (6.17)
in (1.4) for

Ay = {l>°}o A= {fl + )2q + h>0}, M = {fZ- + Azq' + h' >0},.
F\x = {g(x'0)>0}' F;( ={g' (x'o)’o}' ){20'
and in (1.5) for

(8.1€)
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By ={4e£'>0}, A={f +£, +£ +Ag+Ag +h+h'>0}
(8.19)

A, = {(g+g") (x,7)> 0},  x>0.
The condition of minimality is no severe restriction, since any representation
of the form (1.1)-(1.5) can easilv be modified sn as to become minimal. A further
condition ve may irpose, without loss in generality, is that the sequence of
functions 9 in (1.3) be non-increasing.

We now consider two random measures € and E on [0,1]2, admitting representations

as in (1.1) in terms of constants “ij’ﬂi' p:',, ¥, and a’j'ﬁi'ﬁ;j' ¥,

i
respectively. Assume that there exist same permutations 7 and o' of N, such that
= =A ="' =Y i,q€N
Nij “wi'w:'i' Pj- P’ri' Pj pwJ!' x " 1,]61‘- (8.20)

Then clearly §g E The same conclusion holds if E and E satisfv (1.2) with
constants “ij' Pi'/‘%' Y, ¥, and aij' /'3']._, F‘:i' ‘)", 3, respectively, and there
exists a permutation M of N satisfying
--=- .=- -=-' =- - i ‘.\!o 021
43 qlims' P _ﬂti' P Ptj’ ¥=7,4=3, ija (8.21)
Let us next assume that € and € are defined on R, x[0,1] and satisfy (1.3)
(though without ), for some functions and constants fj.gk,h.ﬁj.i, and fj,ék,ﬁ,
ﬁj,f, respectively. Then ¢d E, provided there exist some nermutation T of I and
sare A-preserving transformations T and T of R,, such that a.e. A for all j,ket,
£0T = -f'wj-i g oT = §oT, heT = BT, P = ﬁnj, = 7. (8.22)
If € and E are instead defined on P.i,
and constants £, 4, ¥, g, g', h, h', and Fr Zr 7: g, a', Tl, B'r respectively,

and they satisfy (1.4) with functions

then g ¢ € if there exist some A-preserving transformations X,T(,Y,?,Ux,ﬁx,vy,v '
T, T of R, and va,f of [0,1], x, ,» each jointly measurable in all argurents,

Xy .
such that a.e. A,
£(X(x),¥(y) 7, (2) = F(X(x) ,¥(y) ,‘z‘xvm), .

gX(x),U () =FXE) G, W), g (¥(y) V() - '@y T, 0, (8.23)

i Ql

hex = heX, h'ey =h'eY, (go7 =1.T, Y=

The corresponding conditions in case of (1.5) is that there should exist some
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A.-preserving transformations X,X,U ,C,,T,T of R, and ny'zxy of [0,1], X,YER, ,
such that a.e. A,
£(X(x),X(y) ,ny(z)) = £(X(x),X(y) ,ny(z)) ’
(9,9") (X(x),U () = §3) X, 0, @), p=f, ¥=7V, (8.24)

(h,h',£)eX = (BB E )X, (LLeT = (£,1")eT.
The next result shows that the stated conditions for £ d E are also

necessary. We amit the proof, since the required arguments are very similar to

those employed in Kallenberg(lz) .

Proposition 3. Consider two ergodic random measures € and €, with minimal

representations as in either one of the formulas (1.1)-(1.5). Assume also in case

of (1.3) that g;5g)>... Then the stated conditions for ¥ QE are both necessary
and sufficient.

We remark that, in view of Lemma 1, any ergodic randam measure § with a
minimal representation as in (1.1)-(1.5) could also be represented in terms of
any other set of functions and constants, vhich is equivalent in the sense of
Proposition 2. Thus the latter result also tells us essentially to what extent

the a.s. representations in (1.1)-(1.5) are unique.
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